An adaptive steganography method for compressed videos with HEVC standard

Document Type : Original Article

Authors

1 Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran

2 Department of Computer Engineering, Mobarakeh Branch, Islamic Azad University, Mobarakeh, Isfahan, Iran.

3 Department of Computer Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran.

Abstract

Among others, steganography of  video data is an important research topic in data encryption technologies, which is considered as an essential tool; this is because not only the security required for the transmission of hidden messages is becoming increasingly difficult, but also such security in video files has a high important. This research is based on the HEVC standard, which is the latest video compression standard to date. This paper presents a new method for steganography of compressed videos with the HEVC standard. In the proposed method, the motion vectors of the prediction blocks inside the frame are used as carriers of hidden information. A set of randomly selected coding block motion vectors is used and embedding of information is done by increasing or decreasing one unit of the motion vector component. The experimental results showed that after embedding the hidden information, the video quality decreased low but the average of the embedding capacity increased.

Keywords


[1] شاه‌بهرامی ا.، هویدا ف.، «ارزیابی کارایی تشخیص جعل کپی-انتقال تصاویر مبتنی بر بلاک‌بندی»، مجله محاسبات نرم، جلد 7، شماره 1، ص 62-79، 1397.
[2] Mstafa R. J., Elleithy K. M., and Abdelfattah E., "Video steganography techniques: Taxonomy, challenges, and future directions," in 2017 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1-6, IEEE, 2017.
[3] Yang Y., Li Z., Xie W., and Zhang Z., "High capacity and multilevel information hiding algorithm based on pu partition modes for HEVC videos," Multimedia Tools and Applications, pp. 1-24, 2018.
[4] Xu C., Ping X., and Zhang T., "Steganography in compressed video stream," in Innovative Computing, Information and Control, 2006. ICICIC'06, 1:269-272, IEEE, 2006.
[5] Jia-Ji W., Rangding W., Wei L., Dawen X., and Meiling H., "An information hiding algorithm for HEVC based on intra prediction mode and block code," Sensors & Transducers, 177(8):230-237, 2014.
[6] ذوقی م.، اسماعیلی م.، «تشخیص پویای پلاک خودرو مبتنی بر مورفولوژی برای تصاویر رنگی و مادون قرمز»، مجله محاسبات نرم، جلد 6، شماره 1، ص 88-99،  1396.
[7] Xu Z., Min B., and Cheung R. C. C., "A fast inter CU decision algorithm for HEVC," Signal Processing: Image Communication, 60:211-223, 2018.
[8] Lee D. and Jeong J., "Fast CU size decision algorithm using machine learning for HEVC intra coding," Signal Processing: Image Communication, 62:33-41, 2018.
[9] Correa G., Assuncao P., Agostini L., and da Silva Cruz L. A., Complexity-aware high efficiency video coding. Springer, 2016.
[10] Sarwer M. G., Po L.-M., and Jonathan Wu Q. M., "Fast sum of absolute transformed difference based 4×4 intra-mode decision of H.264/AVC video coding standard," Signal Processing: Image Communication, 23(8):571-580, 2008.
[11] Park S.-h., "A sub-pixel motion estimation skipping method for fast HEVC encoding," ICT Express, 5(2):136-140, 2018.
[12] Wang J., Jia X., Kang X., and Shi Y.Q., ”A cover selection HEVC video steganography based on intra prediction mode”. IEEE Access, 7:119393-119402, 2019.
[13] Saberi Y., Ramezanpour M., and Khorsand R., “An efficient data hiding method using the intra prediction modes in HEVC”, Multimedia Tools and Applications, 79(43):33279-33302, 2020.
[14] Yang Y., Li Z., Xie W., and Zhang Z., “High capacity and multilevel information hiding algorithm based on PU partition modes for HEVC videos”, Multimedia Tools and Applications, 78(7):8423-8446, 2019.
[15] Liu Y., Liu S., Zhao H., and Liu S., “A new data hiding method for H. 265/HEVC video streams without intra-frame distortion drift”, Multimedia Tools and Applications, 78(6):6459-648, 2019.
[16] Konyar M.Z., Akbulut O., and Oztürk S., "Matrix encoding-based high-capacity and high-fidelity reversible data hiding in HEVC." Signal, Image and Video Processing, pp.1-9, 2020.
[17] Long M., Peng F., and Li H.-y., "Separable reversible data hiding and encryption for HEVC video," Journal of Real-Time Image Processing, 14(1):171-182, 2018.
[18] Chang P. C., Chung K. L., Chen J. J., Lin C. H., and Lin T. J., “An error propagation free data hiding algorithm in hevc intra-coded frames,” in Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2013 Asia-Pacific, 2014.
[19] Li D., Zhang Y., Li X., Niu K., Yang X., Sun Y., “Two-dimensional histogram modification based reversible data hiding using motion vector for H. 264”, Multimedia Tools and Applications, 78(7): 8167–8181, 2019.
[20] Xu D., "Commutative Encryption and data hiding in HEVC Video Compression.", IEEE Access, 7:66028-66041, 2019. 
[21] Yang J., and Li S., "An efficient information hiding method based on motion vector space encoding for HEVC", Multimedia Tools and Applications, 77(10): 11979-12001, 2018.
[22] Zhang X. and Wang S., "Efficient steganographic embedding by exploiting modification direction," IEEE Communications Letters, 10(11):781-783, 2006.
[23] Saberi Y., Ramezanpour M., and Khorsand R., “Information Hiding Based on Matrix Embedding and Motion Vector in the HEVC Standard”. Journal of Advanced Signal Processing, 3(2):213-225, 2019.
[24] Fan L., Tiegang G., Qunting Y., and Yanjun C., "An extended matrix encoding algorithm for steganography of high embedding efficiency", Computers & Electrical Engineering, 37(6):973-981, 2011.
[25] Guo M., Sun T., Jiang X., Dong Y., and Xu K., “A Motion Vector-Based Steganographic Algorithm for HEVC with MTB Mapping Strategy”, In International Workshop on Digital Watermarking (pp. 293-306). Springer, Cham, 2019.
[26] Kim C., "Data hiding by an improved exploiting modification direction," Multimedia Tools and Applications, 69(3):569-584, 2014.
[27] HEVC J.-V., (2018), High Efficiency Video Coding (HEVC) [Online]. Available: https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-16.20.
[28] Bossen F., "Common test conditions and software reference configurations," JCTVC-L1100, vol. 12, 2013.
[29] ویسی ه.، قایدشرف ح.، ابراهیمی م.، «بهبود کارایی الگوریتم‌های یادگیری ماشین در تشخیص بیماری‌های قلبی با بهینه‌سازی داده‌ها و ویژگی‌ها»، مجله محاسبات نرم، جلد 8، شماره 1، ص 70-85، 1398.