Detection of Disc Destruction Between Lumbar Vertebrae Using MRI Images

Document Type : Original Article

Authors

1 Faculty of Electrical and Computer Engineering, Pars Razavi University, Gonabad, Iran

2 Faculty of Electrical and Computer Engineering, Gonabad Higher Education Complex, Gonabad, Iran

Abstract

Most people experience low back pain at least once in their lifetime. Lumbar disc herniation is one of the major causes of low back pain. Treatment methods for disc herniation are very diverse. Therefore, diagnosis of the exact size of herniation and its location can greatly help specialists to select the best treatment method. In this research, an automated method for diagnosing lumbar disc herniation using 130 MR images is proposed. In the proposed method, using three algorithms, namely region growing, OTSU and active contour, the intervertebral discs and their boundary were precisely separated from the background of the image. In the next step, after extracting the most significant features of the images, they are divided into healthy and unhealthy classes by SVM classifier with 89.9% accuracy. The classification accuracy was compared with classifiers KNN, Ensemble, and decision tree. Finally, it was determined the SVM classifier has the highest accuracy for the classification.

Keywords


[1] Tan W.K., Hassanpour S., Heagerty P.J., Rundell S.D., Suri P., Huhdanpaa H.T., James K., Carrell D.S., Langlotz C.P., Organ N.L., Meier E.N., Sherman K.J., Kallmes D.F., Luetmer P.H., Griffith B., Nerenz D.R., and Jarvik J.G., “Comparison of natural language processing rules-based and machine-learning systems to identify lumbar spine imaging findings related to low back pain”, Academic radiology, 25(11):1422-1432, 2018.
[2] Ghosh S., Alomari R.S., Chaudhary V., and Dhillon G., “composite features for automatic diagnosis of intervertebral disc herniation from lumbar MRI”, 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (EMBC) 2011, Boston, MA, USA,pp. 5068-5071, 2011.
[3] Galfat D.R. and Mishra R., “Diagnostic accuracy of diagnostic imaging for lumbar disk herniation in adults with low backache – a prospective study”, National Journal of Medical and Dental Research, 7(1):05-07, 2018.
[4] آخوندی ر.، حسینی ر.، «ارایه مدل هوشمند هایبریدی فازی-تکامل ژنتیکی تفاضلی در یک سیستم خبره فازی برای پیش‌بینی خطر ابتلا به بیماری قلبی»، مجله محاسبات نرم، جلد 6، شماره 2، ص ۳۲-۴۷، 1396.
[5] قبائی ارانی م.، مهدی بابایی ف.، «رویکرد تخصیص منبع کارا برای پردازش داده های حوزه سلامت در محیط رایانش ابری»، مجله محاسبات نرم، جلد 8، شماره 2، ص ۸۰-۱۰۱، 1398.
[6] Doi K. and Huang H.K., “Computer-aided diagnosis (CAD) and image-guided decision support”, Computerized Medical Imaging and Graphics, 31(4-5): 195-197, 2007.
[7] Doi K., “Computer-aided diagnosis in medical imaging: Historical review, current status and future potential”, Computerized Medical Imaging and Graphics, 31(4-5): 198-211, 2007.
[8] Huang H.K., “Computer-Aided Diagnosis (CAD) and Image-Guided Decision Support”, in PACS and Imaging Informatics: Basic Principles and Applications, 2nd ed., H. K. Huang, D.Sc, FRCR (Hon.), FAIMBE, Ed. New York: John Wiley & Sons, Inc., pp.775-806, 2010.
[9] Deyo R.A., Mirza S.K., and Martin B.I., “Back pain prevalence and visit rates: Estimates from U.S. national surveys”, Spine, 31(23): 2724-2727, 2002.
[10] Haughton V., “Medical imaging of intervertebral disc degeneration: current status of imaging”, Spine, 29(23): 2751-2756, 2004.
[11] Kim K.Y., Kim Y.T., Lee C.S., Kang J.S., and Kim Y.J., “Magnetic resonance imaging in the evaluation of the lumbar herniated intervertebral disc”, Int Orthop, 17(4): 241-244, 1993.
[12] Pfirrmann C.W., Metzdorf A., Zanetti M., Hodler J., and Boos N., “Magnetic resonance classification of lumbar intervertebral disc degeneration”, Spine, 26(17): 1873-1878, 2001.
[13] Griffith J.F., Wang Y.-X.J., Antonio G.E., Choi K.C., Yu A., Jhuja A.T., and Leung P.C., “Modified pfirrmann grading system for lumbar intervertebral disc degeneration”, Spine, 32(24): E708-E712,  2007.
[14] Barreiro M.S., Nogueira-Barbosa1 M.H., Rangayyan R.M., and Menezes-Reis R., “Semiautomatic classification of intervertebral disc degeneration in magnetic resonance images of the spine”, Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), 5th ISSNIP-IEEE, pp. 1-5, 2014.
[15] Salehi E., Yousefi H., Rashidi H., and Ghanaatti H., “Automatic Diagnosis of Disc Herniation In Two-dimensional MR Images with Combination of Distinct Features Using Machine Learning Methods”, 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), 2019.
[16] ویسی ه.، قایدشرف ح.، ابراهیمی م.، «بهبود کارایی الگوریتم‌های یادگیری ماشین در تشخیص بیماری‌های قلبی با بهینه‌سازی داده‌ها و ویژگی‌ها»، مجله محاسبات نرم، جلد 8، شماره 1، ص ۷۰-۸۵، 1398.
[17] Adams R. and Bischof L., “Seeded Region Growing”, IEEE Transactions on patfern analysis and machine intelligence, 16(6):641-647, 1994.
[18] Otsu N., “A Threshold Selection Method from Gray-Level Histogram”, IEEE Transactions on systems, man, and cybernetics, 9(1):62-66, 1979.
[19] Kass M., Witkin A.P., and Terzopoulos D., “Snakes: Active Contour Models”, International Journal of Computer Vision, 1(4): 321-331, 1988.
[20] Han J., Rodriguez J. C., and Beheshti M., “Diabetes data analysis and prediction model discovery using rapidminer”, International Conference on Bio-Science and Bio-Technology, (BSBT) 2008, part of the Second International Conference on Future Generation Communication and Networking, (FGCN) 2008, 3:96-99, IEEE, 2008.
[21] Fawcett T., “An introduction to ROC analysis”, Pattern Recognit. Lett., 27(8): 861-874, 2006.