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ABSTRACT. Cancer is a major medical challenge, and mathematical modeling plays a key
role in understanding its dynamics and improving treatments. Various modeling tech-
niques have been developed, including differential equations, cellular automata, agent-
based models, and game theory. While differential equations are widely used to simulate
tumor growth and treatment responses, they often rely on simplified assumptions. Cel-
lular automata capture spatial behaviors but may oversimplify biological mechanisms,
and agent-based models can be computationally intensive. Game theory, by contrast,
offers a strategic framework to study tumor evolution and resistance, enabling the design
of adaptive therapies. This research provides a comprehensive review of recent advances
in game theory-based cancer modeling. Cancer progression can be conceptualized as an
evolutionary competition among various cell types. By employing game theory-based
models, it is possible to predict the evolutionary dynamics of cancer. These models
facilitate the development of evolutionary treatment strategies that guide the patient’s
condition towards more favorable outcomes. The investigation of tumor progression us-
ing game theory offers significant medical implications, as it bridges the gap between
experimental findings and mathematical modeling. This approach not only enhances our
understanding of cancer dynamics but also contributes to the design of more effective
therapeutic interventions.

Keywords: Cancer, Game Theory, Cancer Treatment, Evolutionary Game, Prisoner’s
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1. Introduction

Cancer originates from mutations in cellular DNA that disrupt normal regulatory
mechanisms, resulting in uncontrolled proliferation. As shown in Figure 1, tumor cells
exhibit hallmark capabilities that drive disease progression, including persistent prolif-
erative signaling, resistance to growth inhibition and cell death, replicative immortality,
angiogenesis, and metastasis [1]. These behaviors facilitate rapid clonal expansion and
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FIGURE 1. Characteristics of cancer disease [1].

contribute to additional mutations within the tumor population. To capture the un-
derlying dynamics of cancer, various modeling frameworks have been proposed, such as
cellular automata [2], [3], differential equations [4], [5], agent-based simulations [6], and
more recently, game-theoretic models [7], [8]. Game theory, originally introduced by von
Neumann and Morgenstern, has evolved from economic analysis to a powerful tool for
modeling adaptive behavior across biological systems [9].

Its application to cancer research has gained momentum through evolutionary game the-
ory, which draws on principles of Darwinian selection to explore competitive and coop-
erative strategies among cells [10]. Population-level dynamics are commonly analyzed
using replicator equations, which model frequency changes based on fitness differentials.
If a strategy yields higher fitness than the population average, it becomes more prevalent;
conversely, inferior strategies diminish over time.

Key solution concepts in this context include Nash Equilibrium (NE) and Evolutionarily
Stable Strategy (ESS). While NE identifies strategy configurations resistant to unilateral
change, ESS further ensures resilience against invasion by mutant strategies under natural
selection [11]. Static analysis of cancer populations often centers on identifying such stable
configurations, whereas dynamic analysis tracks their evolution through time.

Game theory, a mathematical tool for analyzing biological problems, has recently been
applied to explore the complexity of cancer. Various methods, such as the hawk-dove
game [12], the prisoner’s dilemma [13], coordination games [14], multiple public goods
games, and the volunteer dilemma [15], have been utilized in recent years to analyze
cancer. The hawk-dove game examines the interactions between two cancer cells within
the same tumor, where they adopt either an invasion (hawk) or passive (dove) strategy.

*Corresponding author. Email: salimi@kashanu.ac.ir
TEmail(s): tavakoli.fatemeh@znu.ac.ir, dmp@znu.ac.ir, salimi@kashanu.ac.ir



A Comprehensive Review of Game Theory Applications in Modeling Cancer Progression

Each cell’s role is determined by the type of opponent it encounters, as it lacks knowledge
of its own type. This game aims to identify evolutionary stable strategies (ESS) within
the population under study. An increase in fitness, reflected by a higher payoff and an
enhanced cell reproduction rate, serves as a direct measure of tumor invasion. Within the
game, cells may either cooperate or compete, but their behavior consistently aligns with
the ESS of the group.

Using the hawk-dove game, researchers [12], [16] have proposed a model to examine
the interaction between two distinct phenotypes in prostate cancer, where survival is in-
fluenced by their reliance on the microenvironment. Pathologically, this model contrasts
stromogenic low-grade prostate adenocarcinoma with non-stromogenic high-grade prostate
adenocarcinoma. The findings suggest that the hawk-dove game underscores the signifi-
cance of the microenvironment in the prognosis and progression of prostate cancer.

The prisoner’s dilemma, a well-known game theory model, has been extensively applied
in political science and economics, and more recently in cancer research [13]. This game
presents a scenario where two prisoners must decide whether to cooperate, knowing that
cooperation is beneficial to both. In the context of cancer, this model can be used to
analyze interactions between two cell populations. Group A represents non-tumor cells,
while Group B represents tumor cells. Importantly, cells in Group A are unaware of the
strategies of cells in Group B and vice versa, although both groups understand that coop-
eration yields the highest benefit. Additionally, both cell types recognize that if neither
cooperates, they will receive minimal benefit, and if only one group cooperates, the other
group will gain the benefit.

The Prisoner’s dilemma, a paradigmatic game for analyzing interactions between selfish
individuals, typically results in non-cooperation with minimal payoff for both players.
However, in certain biological contexts, such as cancer, the outcome may differ. For in-
stance, in the case of colon adenocarcinoma metastasizing to the liver, liver cells inherently
cooperate due to their programming. This cooperation benefits metastatic colon cancer
cells, enhancing their fitness and promoting the invasive nature of cancer [17].
Coordination games investigate mechanisms to promote uniformity within a group, where
any deviation by an individual results in reduced payoffs for the entire group. This prin-
ciple operates on various levels. For instance, pure coordination games require absolute
positive uniformity to achieve the best collective payoff, while absolute negative unifor-
mity results in a lower payoff, and any divergence in uniformity among individuals leads
to zero payoff. The choosing-sides game exemplifies this concept, offering an all-or-none
payoff: maximum profit is achieved only if all participants, such as drivers, choose the
same side of the road, with any other choice yielding zero profit. A simpler type of coordi-
nation games is the stag hunt game, where lack of coordination among individuals results
in minimal profit, whereas coordination yields higher profit. By modifying the Lotka-
Volterra competitive model, coordination games have been proposed to enhance current
cancer treatments. This approach involves comparing two different treatment strategies:
one that increases the death rate of tumor cells and another that increases the mutation
rate of tumor cells [14].

The volunteer dilemma, a prime example of N-player public goods games, models social
dilemmas across various biological communities, including unicellular organisms (such as
bacteria and amoeba), vertebrates [18], [19], and cancer cell communities. This dilemma
occurs when certain individuals in a society volunteer to incur a cost to produce a public
good, while others benefit without contributing. The absence of the public good is also
detrimental to the population, leading to a stable equilibrium between cooperators and
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defectors as long as the population size remains constant. However, the dilemma intensi-
fies when the group size changes, as the overall payoff for the population decreases with an
increasing number of members, especially in groups with a low probability of volunteers.
Archetti’s research has identified the optimal group size in social dilemmas as the size
that maximizes the likelihood of producing a public good. An illustrative scenario of the
volunteer dilemma involves a group of deer in Africa facing the threat of hunters [18].
In this context, the payoff for the deer is survival, while the cost to the volunteer is the
accepted risk of being hunted first. The individual’s dilemma is whether to alert the group
to imminent danger. It’s a choice that puts the animal at risk, or the entire group if it
chooses not to cooperate. Interestingly, defectors can sometimes benefit the group under
specific conditions. Thus, a mix of cooperators and defectors can create an ideal situation
for the group’s survival against a common threat.

The concept of a social dilemma has been employed to investigate the interactions between
tumor cells and immune system cells, with tumor cells being likened to deer and immune
cells to hunters [20]. Under experimental conditions, this model effectively demonstrates
that the presence of defectors facilitates the tumor’s ability to evade the immune system’s
effects.

Numerous studies have utilized the Stackelberg game to model cancer treatment. Stackel-
berg’s evolutionary game theory (SEG) integrates classical and evolutionary game theory
to analyze interactions between a rational leader and evolving followers, with the physi-
cian acting as a player in the game. The analysis of these models aids in the design of
treatment strategies. Additionally, significant advancements in evolutionary graph theory
over the past two decades have emphasized the importance of spatial considerations in
modeling.

1.1. Contributions. This review establishes a timely and necessary synthesis of
game theory applications in cancer modeling, addressing a research gap that persists de-
spite the availability of previous surveys. While earlier studies have examined individual
game-theoretic models in isolation, this work distinguishes itself by offering a guideline-
driven framework designed to orient researchers across disciplines mathematics, biology,
and clinical oncology toward both the conceptual foundations and translational potential
of these models.

The paper advocates for a dedicated survey that does more than catalog existing ap-
proaches; it contextualizes them within the biological complexities of cancer. Specific
attention is paid to underexplored domains such as spatial dynamics, social dilemmas in
tumor microenvironments, and gene expression analysis via microarray modeling, each
of which presents unique challenges and opportunities. To facilitate practical application
and future development, this review articulates a coherent set of research questions aimed
at identifying existing advancements, methodological gaps, and open challenges, including
heterogeneity, evolutionary adaptation, and therapeutic resistance.

Nonetheless, current modeling frameworks exhibit critical limitations. Many rely on static
payoff structures, overlooking the temporal dynamics of tumor evolution and treatment re-
sponse. The spatial complexity of the tumor microenvironment and heterogeneous cell—cell
interactions are often simplified or ignored. Furthermore, most models are restricted to
a single biological scale whether molecular, cellular, or tissue-level missing critical cross-
scale dependencies that shape tumor behavior.

These guidelines inform the organization of the paper, which is structured around six
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modeling paradigms: evolutionary games, public goods dilemmas, classical strategic inter-
actions, spatially informed models, microarray-based strategies, and game theory-driven
therapeutic frameworks.

Foundational concepts in both cancer biology and strategic modeling are clarified at the
outset, enhancing accessibility for interdisciplinary readers. In doing so, the review not
only serves as a resource for theoretical exploration but also provides a translational scaf-
fold linking mathematical abstractions to clinical insight ultimately fostering more in-
formed and adaptive approaches to cancer treatment. This study explores the strategic
behavior of cancer cells under both treated and untreated conditions through the lens
of game theory. Leveraging a range of methodologies, we examine foundational princi-
ples in cancer modeling and evolutionary dynamics, then delve into specific frameworks
including public goods games, Hawk-Dove scenarios, and the Prisoner’s Dilemma to an-
alyze cooperative and competitive interactions among cellular populations. Spatial game
theory is employed to highlight how tumor topology influences strategic outcomes, while
microarray-based models address gene expression variability. We also investigate ther-
apy optimization using game-theoretic strategies and present experimental case studies
demonstrating practical implementations. The final sections synthesize these approaches,
offering conclusions and future directions for advancing interdisciplinary cancer research.

2. Basic Concepts

To establish a consistent foundation for the subsequent sections, this review introduces
two key domains of knowledge: cancer biology and game theory. These concepts form the
basis for interpreting and evaluating various modeling approaches throughout the article.

2.1. Cancer Concepts and Definitions. Cancer originates from mutations in the
DNA of cells that disrupt normal regulatory mechanisms. These alterations trigger uncon-
trolled proliferation, a hallmark of malignancy. As shown in Figure 1, cancer cells exhibit
distinct traits that collectively define the disease and shape its clinical behavior [1].
Loss of Regulatory Control: Mutated cells no longer respond to signals that suppress
growth or promote cell death. This dysregulation underpins their persistent division and
survival.

Avoidance of Apoptosis: Unlike healthy cells that undergo programmed cell death
when damaged, cancer cells resist apoptosis, enabling continued survival under adverse
conditions.

Autonomous Growth Pathways: Through carcinogenesis, cancer cells develop inde-
pendence from external growth factors, allowing unchecked expansion.

Angiogenesis and Nutrient Access: To support their high metabolic demands, cancer
cells stimulate new blood vessel formation. This vascular remodeling not only ensures
nutrient supply but also facilitates metastasis.

Resistance to Growth Inhibition: Despite the presence of growth-suppressing signals
whether intracellular or environmental cancer cells persist in dividing, highlighting their
escape from standard tissue controls.

Metastatic Potential: Cancer progression includes detachment of cells from the primary
tumor and colonization of distant tissues via the bloodstream, forming secondary tumors.
Asexual Proliferation and Mutation Cascade: Rapid cell division amplifies the can-
cer cell population and fosters conditions that encourage further mutations, fueling tumor
evolution.

These features are central to developing therapeutic strategies aimed at targeting the
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vulnerabilities of cancer cells, particularly within adaptive and game-theoretic treatment
frameworks.

2.2. Game Theory Concepts and Definitions. Game theory is a mathematical
framework used to analyze strategic interactions between agents whose decisions affect one
another’s outcomes. In the context of cancer modeling, it provides a versatile lens for rep-
resenting cellular behaviors, competition for resources, and responses to treatment. The
following core concepts form the foundation for game-theoretic approaches in oncology:
Players and Strategies: Key players include cancer cells, stromal cells, immune cells,
and therapy agents. Each player can adopt strategies such as proliferation, invasion, co-
operation, immune evasion, or treatment response.

Payoff Functions: Strategies yield payoffs quantified by outcomes like reproductive suc-
cess, survival probability, or treatment sensitivity. These payoffs represent the fitness
advantage conferred by each decision.

Nash Equilibrium and Evolutionarily Stable Strategy (ESS): A Nash equilibrium
is a strategic configuration where no player benefits from unilateral deviation. An ESS,
building upon this concept, resists invasion by mutant strategies and reflects stability un-
der evolutionary dynamics.

Replicator Dynamics: These differential equations track changes in population shares
of competing strategies over time, depending on their relative fitness. They help model
tumor heterogeneity and the rise or fall of cellular phenotypes.

Public Goods and Social Dilemmas: Tumor cells often face trade-offs between indi-
vidual fitness and collective benefit. Public goods models illustrate how cooperation (e.g.,
angiogenesis or immune suppression) can emerge or fail within cancer cell populations.
Stackelberg Games: These hierarchical models simulate interactions where a leader
(e.g., physician) optimizes a strategy in anticipation of the adaptive responses of the fol-
lowers (cancer cells). Stackelberg evolutionary games offer a promising route for designing
treatment protocols based on dynamic cancer behavior.

Adaptive Therapy Frameworks: Rooted in game-theoretic reasoning, adaptive ther-
apy treats cancer as a responsive opponent. Rather than aiming for total eradication,
treatment strategies are adjusted over time to maintain tumor control and prevent resis-
tance, optimizing patient outcomes while minimizing adverse effects.

3. The Evolutionary Game Theory in Cancer

Game theory provides a robust framework for modeling strategic interactions in com-
plex biological systems, including cancer. Over recent decades, game-theoretic models
have significantly advanced our understanding of cancer dynamics, therapeutic responses,
and the development of effective treatment strategies. One pioneering model that explores
cancer cell behavior through fitness matrices and replicator dynamics is the ” Go-vs-Grow”
game introduced by Basanta et al. [21]. A critical milestone in tumor progression is metas-
tasis, defined as the spread of cancer to non-adjacent organs. According to Basanta et al.,
this transformation requires cells to shift from a purely proliferative phenotype to a motile
one—an adaptation that entails a biological cost, as represented in the benefit matrix
provided.

The model considers two phenotypes: proliferative and motile. Their interactions are
captured in Table 1, which presents the payoff matrix. Here, the benefit associated with
any interaction is denoted by b, while the cost of cellular movement is marked as c, rela-
tive to the baseline benefit. Basanta et al. subsequently expanded this model to include
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TABLE 1. Payoff matrix for the Go-vs-Grow game.

Phenotype Proliferative Strategy Mobile Strategy
Proliferative Strategy % b—c
Mobile Strategy b b—35

the influence of glycolysis, introducing three distinct cancer cell types: invasive (Go), au-
tonomous growth (Grow), and glycolytic (GLY) phenotypes. The analysis emphasized
how changes in matrix parameters affect game properties and the evolutionarily stable
strategies (ESSs) [22].

Building on this, further studies investigated tumor—stroma interactions and their influence
on cancer invasiveness [23]. Sartakhti et al. explored tumor-stromal dynamics specifically
in multiple myeloma [24], [25], while Dingli et al. focused on stromal dominance over
tumor cells [26]. In [27], an evolutionary game-theoretic model was introduced to study
cancer invasion via interactions between MMP and TIMP molecules. The model effectively
captures extracellular matrix degradation and suggests potential therapeutic approaches
for impeding invasion.

Another application of evolutionary game theory involves modeling cancer-immune sys-
tem interactions [28]. This work addressed dynamics among proliferative, quiescent, and
immune cells, using algebraic stability analysis to assess equilibrium conditions that rep-
resent tumor homeostasis.

In [29], You et al. introduced an agent-based, two-dimensional, continuous-space model
that simulates interactions among cancer cells with respect to their proximity to blood
vessels. Applied to metastatic castration-resistant prostate cancer (mCRPC), the model
analyzes the population dynamics of three phenotypes: exogenous testosterone-dependent
(T+), testosterone-producing (7F), and testosterone-independent (77) cells. The tumor
microenvironment is divided into five zones (0-4), with decreasing carrying capacity as
distance from the vessel increases. Zone 0 represents the vessel itself, while Zone 4 lies
too far to support proliferation. In Zones 1-3, proliferation is determined by spatially
defined payoff matrices, illustrated schematically in Figure 2. Multiple studies have mod-
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FIGURE 2. Schematic representation of a blood vessel and surrounding
regions. Region 0 contains the vessel; regions 1 to 3 radiate outward with
decreasing proliferation support, and region 4 lies beyond viable nutrient
range [29].

eled cell-cell and tumor—environment interactions using Lotka—Volterra (LV) equations
and their extensions [30]. While initially designed for two-species systems, LV dynamics
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have been expanded to accommodate n cancer cell types. By transforming the fitness
matrix into a competition matrix and maintaining equilibrium, the replicator dynamics
for n types can be recast into an LV model with n-1 types, and vice versa. This ESS
equivalence is detailed in [31]. Models by Zhang et al. [30], which use replicator dynamics
as noted in [32], demonstrate conservation of ESS across transformations. Cunningham
et al. [33] extended these concepts to optimize abiraterone treatment using control theory,
minimizing total tumor burden variance.

Bayer [34] proposed an evolutionary coordination game to simulate cancer initiation and
progression. Despite their analytical complexity, coordination games offer high potential
for modeling frequency-dependent interactions and informing therapeutic design. Bayer
modeled two species using ordinary differential equations and applied LV dynamics to
describe growth constraints and cooperation dynamics.

In [35], Zheng et al. predicted tumor—stroma dynamics using an evolutionary game model.
Their approach transitioned from mean field theory (MFT) which assumes population ho-
mogeneity to interacting particle systems (IPS), better suited to discrete spatial cell popu-
lations. Durrett and Levin [36] have shown that spatially discrete models yield behaviors
often starkly different from those predicted by MFT. Alternatives to MFT include reac-
tion—diffusion equations, patch-based models, and IPS, all of which help capture localized
interactions.

The evolutionary context of cancer presents extensive challenges, requiring models that
reflect rapid, disturbance-induced evolution. Notable examples include drug resistance
in tumor cell lines [37], fishing-induced phenotype shifts [38], mating behavior adap-
tations [39], and climate-driven trait variation [40]. In these domains, the G-function
fitness-generating approach offers a unified method for modeling both population dynam-
ics and strategic evolution through differential equations linked to Darwinian principles.
Pressley et al. [41] utilized game-theoretic modeling to compare progression timelines un-
der maximum tolerated dose (MTD) and adaptive therapy. The adaptive protocol, which
pauses treatment when tumor burden falls below half and resumes upon relapse, was shown
to outperform MTD in delaying resistance—especially in two-cell populations (sensitive
vs. resistant). Resistance is treated as a quantitative trait, and the dynamics are governed
by G-function formalism [42].

Swierniak et al. [43] proposed the Multidimensional Spatial Evolutionary Games (MSEG)
framework, wherein cells can express mixed phenotypes across a spatial grid. This mod-
eling approach enables populations to exhibit biologically realistic diversity and better
reflect actual tissue heterogeneity.

Finally, tumorigenesis is inherently evolutionary, driven by genetic alterations. Gene-
centric models have helped define the biological logic of cancer, while computational meth-
ods offer opportunities to translate evolutionary theory into clinical control strategies. The
importance of these methods is emphasized in [44].

The research on cancer modeling using evolutionary game theory is summarized in Table
2 and compared based on the evaluated features.

4. Cancer Modeling with Public Goods Game Theory

The public goods game serves as a well-established framework for analyzing collective
behavior and has been applied across diverse domains, including economics, microbial
cooperation, human societies, and animal populations. Its application to cancer model-
ing, however, represents a relatively recent development. Similar to pairwise evolutionary
game theory, the public goods game has been utilized to examine various aspects of tumor
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TABLE 2. A review of models with evolutionary game theory.
Ref. Model Type | Purpose of the | Success Evalua- | Key Notes
No. Model tion
[21] | Go-vs-Grow Study motility emer- | Conditions favoring | Fitness matrix and
Game gence via competi- | motile phenotypes replicator ~ dynamics
tion for spatial competition
[22] Evolutionary | Role of glycolysis in | Glycolytic cells pro- | Interaction among AG,
Game glioma invasion mote invasiveness GLY, and INV cells
[23] Evolutionary | Tumor-stroma inter- | Stromal  co-option | Stromagenic Vs.
Game actions in prostate | drives progression stromal-independent
cancer phenotypes
[24], | Evolutionary | Tumor—stroma dy- | Thresholds for | Pairwise vs. collective
[25] Game namics in myeloma | plasma cell extinc- | interactions; nonlinear
tion benefits in [25]
[26] Evolutionary | Normal vs. malig- | Coexistence and | Replicator  dynamics
Game nant cell interactions | dominance scenarios | for phenotype stability
[27] Evolutionary | MMP-TIMP dy- | Conditions for inva- | Payoff matrices for
Game namics in invasion sive equilibrium protease-inhibitor dy-
namics
[28] Evolutionary | Cancer immunoedit- | Immune-tumor dy- | Strategies: prolifera-
Game ing phases namics modeled tive, quiescent, im-
mune cells
[29] Agent-Based | Vasculature in | Spatial dynamics of | Agent-based modeling
Game Theory | mCRPC modeling T+, TP, T~ cells in continuous space
[34] Coordination | Cancer initiation via | Coordination  fail- | Coordination game
Game coordination dynam- | ures in evolution theory for cell deci-
ics sions
[35] Evolutionary | Cancer—stromal dy- | Spatial patterns and | Interacting particle
Game namics via particles | heterogeneity systems for cell inter-
actions
[41] Evolutionary | Resistance under | Adaptive therapy de- | Replicator equations
Game therapies lays resistance for treatment model-
ing
[43] MSEG Cancer evolution un- | Mixed  phenotypes | Realistic tumor popu-
der interventions and spatial hetero- | lation framework
geneity

biology, though the number of such models remains limited.

Archetti was among the first to employ public goods theory in cancer research, focusing on
the dynamics of growth factor production specifically, angiogenic signals produced by tu-
mor cells [45]. His model incorporated a non-linear sigmoid benefit function, demonstrat-
ing that frequency-dependent interactions can result in the stable coexistence of growth
factor-producing and non-producing phenotypes. Archetti identified five distinct dynam-
ical regimes in his model, each emerging based on parameters such as the cost of factor
production, diffusion rate, and the collective benefit conferred to tumor cells. One key
insight from Archetti’s work is the role of collective interactions in maintaining tumor
heterogeneity, a property strongly linked to therapeutic resistance. His findings revealed
that anti-angiogenic therapies, which aim to suppress growth factor production, are often
transiently effective. Eventually, tumor populations adapt by upregulating these factors.
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In a subsequent study, Archetti applied this framework to insulin-like growth factor II
(IGF-II) in pancreatic cancer, illustrating how variations in production capacity can shift
the population equilibrium and influence tumor growth rates [46]. This model also ex-
plored how diffusion levels affect phenotype coexistence and population stability.

Further extending this line of inquiry, Archetti developed a public goods model to inves-
tigate the Warburg effect, which describes cancer cells’ preference for anaerobic glycolysis
over oxidative metabolism [47]. He modeled the cooperation between cells that produce
acidifying byproducts such as lactic acid and protons and those that do not. In a follow-up
study, the model was expanded to encompass four phenotypes: aerobic (OXI), anaerobic
(GLY), invasive (INV), and anaerobic-invasive (GLY-INV) [48]. GLY and GLY-INV
were defined as cooperators contributing to environmental acidification, while the other
two acted as defectors. Archetti showed that the Warburg effect functions as a non-linear
public good, sustaining tumor heterogeneity and enabling GLY-potent cell populations to
coexist.

Importantly, this work highlighted how acidity-targeted treatments may be effective when
they raise the metabolic cost of cooperation specifically, the cost of producing acid in
oxygen-rich conditions. However, these strategies were shown to lose efficacy when com-
bined with anti-angiogenic therapies, suggesting a need for more nuanced treatment com-
binations.

Complementary research by Salimi et al. [27] introduced an evolutionary multi-impure
public goods game model to describe myeloma cell invasion, focusing on MMP and TIMP
dynamics. This study captured extracellular matrix degradation as a function of coopera-
tive molecule production and proposed treatment strategies to counteract invasion. Their
framework allowed players to simultaneously engage in producing multiple growth factors.
Moreover, they developed a structured public goods game to model angiogenesis, demon-
strating that evolutionary forces, combined with spatial and structural constraints, can
facilitate the expansion of angiogenic clones within a tumor.

The collective body of research in this area is systematically summarized in Table 3, which
reviews cancer models based on public goods game theory. The table compares model ar-
chitectures, evaluated features, and biological assumptions. Through this synthesis, the
review aims to clarify current achievements and limitations in applying public goods theory
to cancer modeling.

5. Modeling Cancer with the Hawk-Dove Game and the Prisoner’s
Dilemma Game

Several studies have applied the Hawk-Dove game to model interactions among cancer

cells [50], [51], [52], [53], [54]. Laruelle et al. [55] specifically utilized this game-theoretic
approach to investigate the dynamics between tumor cell populations. Their research ex-
plored tumor heterogeneity by simulating scenarios with two or three distinct cell types,
calculating the evolutionary stable strategies and associated fitness values. The mathe-
matical results suggest that tumors with lower intratumoral heterogeneity tend to exhibit
more invasive behavior compared to those with higher heterogeneity a conclusion sup-
ported by histological and genomic data from renal carcinoma studies.
The differentiation and mutation capacity of leukocytes, which leads to leukemia develop-
ment, plays an important role in ecological modeling. In [56], the dynamics of leukemia
are examined using the Hawk-Dove game. This model captures the interactions between
malignant leukocytes and healthy leukocytes (leu), addressing the patient’s condition both
before and after diagnosis and treatment.

10
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TABLE 3. A review of public goods game theory models used in cancer

research
Ref. Model Type | Purpose of the | Success Evalua- | Key Notes
No. Model tion
[27] | EGT, Public | Analyze Aligns with in vitro | Reveals equilibria and
Goods Game | MMP-TIMP in- | data; identifies in- | proposes two thera-
teractions in cancer | vasion suppression | peutic approaches
invasion strategies
[45] Conceptual/ Explain high glycol- | Offers evolutionary | Acidic microenviron-
Mathematical | ysis in cancer insight; lacks experi- | ment  proposed as
mental validation evolutionary  advan-
tage
[46] Nonlinear Maintain IGF-II het- | Lab confirms ad- | Explains equilibrium
Public Goods | erogeneity in pancre- | vantage for non- | coexistence among
Game atic cancer producers cancer subtypes
[47] | Nonlinear Understand ~ War- | Predicts stable gly- | Nonlinear benefits sta-
Public Goods | burg effect as | colysis via group se- | bilize glycolytic behav-
Game cooperation issue lection ior
[48] Multiplayer Explore invasive sub- | Strong theory; lim- | Invasive  phenotypes
Public Goods | clones under War- | ited empirical sup- | adapt to acidity
Game burg effect port changes under treat-
ment
[49] Theoretical Apply public goods | Adaptable model for | Suggests public goods
Review theory to disease | cancer and infections | dynamics for treat-
evolution ment and epidemic
modeling

Clear cell renal cell carcinomas (CCRCCs) are characterized by dynamic cell populations.
Their developmental trajectory—from early homogeneity to pronounced intratumoral het-
erogeneity (ITH), followed by secondary clonal and subclonal diversity has been modeled
using the Hawk-Dove framework [57].

The Warburg effect, in which cancer cells adopt a glycolytic phenotype even in oxygen-
rich environments, involves strategic metabolic interactions. Glycolytic cells are believed
to influence aerobic cells by releasing lactic acid, a glycolytic byproduct that creates an
acidic microenvironment around the tumor, often harmful to healthy cells. This interac-
tion is modeled in [58] using the Prisoner’s Dilemma: while cooperative behavior enhances
competitiveness for the population as a whole, individual cells lack incentives to modify
their own metabolic strategies unilaterally.

In [58], cancer metabolism and resource allocation are framed as a strategic game between
aerobic and anaerobic (glycolytic) cells. Aerobic cells require less glucose to generate ATP,
while glycolytic cells consume far more resources to produce the same energy yield, with
lactic acid as a byproduct [59]. Thus, aerobic metabolism represents the ”non-cooperative
strategy,” which emerges as the evolutionarily stable approach in the Prisoner’s Dilemma.
Initially considered a ”passenger process” in tumor ecology, lactic acid accumulation may
later become a ”stimulator process” reshaping the tumor’s microenvironment and popula-
tion composition to facilitate a previously inaccessible ”cooperator” strategy. This study
evaluates natural selection through the lens of game theory.

Research leveraging the Hawk-Dove game and the Prisoner’s Dilemma to model cancer is

11
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thoroughly summarized in Table 4. These frameworks provide powerful tools for analyzing
strategic interactions between cancer cells and their surrounding environment, ultimately
contributing to the development of more effective therapeutic approaches.

TABLE 4. A review of models in cancer research using the Hawk-Dove
game and the Prisoner’s Dilemma game

Ref. Model Type | Purpose of the | Success Evalua- | Key Notes
No. Model tion
[51] Hawk-Dove Explore interactions | Altering fitness | Fitness reduction in
Game between malignant | shifts equilibrium | malignant cells re-
and normal cells in | toward healthy cells | stores balance
multiple myeloma
[52] Hawk-Dove Analyze  selection | Game dominance | Framework for select-
& Prisoner’s | between competing | shifts with popula- | ing between games, not
Dilemma games in cancer | tion and strategy | just strategies
dynamics fitness
[54] | Hawk-Dove Assess spatial de- | 3D models better re- | Spatial structure af-
Game pendencies using 3D | flect population dy- | fects stability and tu-
simulations namics mor behavior
[55] Hawk-Dove Investigate ~ tumor | Lower heterogeneity | Supported by histo-
Game heterogeneity effects | leads to aggressive | logical/genomic data
on progression tumors from renal carcinoma
[56] Hawk-Dove Compare predator- | Insights into patient | Models cell interac-
Game prey vs. game- | condition pre/post | tions and stem cell
theoretic models in | treatment transplant scenarios
leukemia
[57] Hawk-Dove Model early evolu- | Transition from | Linked to pathological
Game tion of CCRCC homogeneity to | and genomic evidence
clonal /subclonal
diversity
[58] Prisoner’s Model metabolic | Glycolytic coopera- | Lactic acid secretion
Dilemma interactions: gly- | tion enhances com- | creates hostile mi-
Game colytic vs. aerobic | petitiveness croenvironment
cells
[60] Prisoner’s Analyze metabolic | Differential resource | Highlights cooperation
Dilemma trade-offs in cancer | usage and ATP yield | and competition in tu-
Game mor evolution

6. Considering the Role of Space in Cancer Modeling with Game The-
ory

Any comprehensive model of cancer progression must account for spatial effects [61],
as cells are confined within anatomical structures and interact with neighboring cells.
These interactions influence cell fitness based on their location within the tissue structure,
affecting the probability of mutation depending on where it initially appears in the tumor.
The interplay between spatial factors and survival strategies in evolutionary game theory
(EGT) has been studied for over 30 years. This was first described in the 1992 study by
Novak and May [62], which demonstrated how complex population structures of cooper-
ators and defectors can evolve or decline when arranged on a two-dimensional grid [63].
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In this context, Lieberman et al. [64] have made significant contributions by introducing
the field of evolutionary graph theory, which examines evolution on graphs of structured
populations. In their study, mutations are characterized by a constant relative fitness r.
The paper discusses two specific structures, the directional line and the star (illustrated in
Figures 3 and 4, respectively), which are relevant to cancer progression. In a directed line
arrangement, cells can only reproduce at the node to their right. Consequently, a mutation
becomes fixed, irrespective of its impact on reproductive fitness, if and only if it occurs
at the leftmost node. The directed line model eliminates selection pressure, a property

O—0—0O—-0—0
O—O0—0O—-0—-0

FiGure 3. In a directed line, each vertex propagates to its adjacent right
vertex. Mutations arising at the bottom (leftmost) node can potentially
replace all other cells, whereas mutations occurring elsewhere (top) cannot
propagate leftward and eventually disappear.

FIGURE 4. A star graph features multiple peripheral nodes linked to a
central hub, with unidirectional connections. Substitution can occur from
periphery to center or vice versa. In systems with many peripheral nodes,
stable mutation fixation requires replication to the center followed by prop-
agation to another peripheral node. The probability of central occupancy
without replacement becomes negligible.

experimentally validated in colorectal crypts, which exhibit one-dimensional replication
dynamics [65]. Star-like configurations used to model pancreatic and colon cancers [61]
require mutations to replicate twice to stably propagate within the network [66]. A key
distinction in graph-based models lies in the directionality of edges. In directed graphs,
an edge from vertex v; to v; signifies that the offspring of v; may replace the resident
of v;, but not vice versa. In undirected graphs, replacement can occur in either direc-
tion. Weighted graphs extend this framework by introducing edge-specific probabilities
w;j, representing the likelihood that residents of v; are replaced, given that resident v; is
selected for reproduction.

To represent epithelial tissues, regular graphs are often employed, in which every node has
the same number of neighbors (k). Ohtsuki et al. [67] formulated a Prisoner’s Dilemma
model on such graphs, demonstrating that cooperation is favored if the benefit-to-cost
ratio b/c exceeds k. Therefore, the probability of encountering a cooperator or defector
depends solely on the strategies adopted by neighboring nodes [68].
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Another critical metric in evolutionary graph theory is the structure coefficient o, which
reflects how graph topology and update rules affect strategic success under weak selection.
For a general two-player game, the corresponding payoff matrix is shown in equation (1).

A B
Ala p (1)
B~ §

Strategy A is favored if the inequality ca+/3 > v+06 holds. As o increases, self-interaction
payoffs (o and §) become more influential in determining evolutionary stability.

In Prisoner’s Dilemma games, cooperation becomes advantageous when % > g—ﬂ In in-
finite populations (¢ = 1), cooperation cannot evolve. These relationships hold for both
birth—death and death—birth update mechanisms. More complex structures, such as star
graphs, show ¢ values dependent on update methods. For example, a star with N nodes has

3 A2 _
o = 1 under birth—death updates, but under death—birth updates, o = %

Structure coefficients have also been adapted for multiplayer games [69] and multi-strategy
models [70], and are instrumental in incorporating spatial structures into adaptive dynam-
ics [71].

To formally account for spatial effects, EGT must include structural corrections to repli-
cator equations. In regular graphs, depending on the game’s payoff matrix and update
rule, an additional term modifies the definition of evolutionary stability [72].

Spatial effects on epithelial layers have been modeled using Voronoi lattices introduced
over a century ago to represent cell nucleus distributions in tissue samples [73], [74].
Voronoi nodes typically have six neighbors, rarely fewer than four or more than eight.
These networks simulate mechanical forces exerted by neighboring cells, influencing nu-
clear movement and spatial reorganization. Archetti [75] applied a public goods game
with a sigmoid benefit function on Voronoi lattices, using local updates where births and
deaths occur among adjacent nodes—allowing benefits to diffuse beyond immediate con-
tacts.

Studies by Kaveh et al. [76] and Rychtdr & Taylor [77] showed that spatial variation in
fitness suppresses stability within invasive populations. In contrast, Ashcroft et al. [78]
and Dean et al. [79] proposed that time-dependent selection fluctuations promote het-
erogeneity. Mehdipour et al. [80] further suggested that environmental variability can
stabilize previously non-viable mutant strains.

Spatial influences can also be approximated in cancer models using pseudo-space formu-
lations. By constructing replicator equations based on hypothetical payoff matrices and
assuming fixed cell locations, interactions among different phenotypes can be modeled
without explicit graph structures. Flach et al. [81] employed this approach to analyze
melanoma—fibroblast interactions. Fibroblasts stabilize freely migrating cancer cells, con-
verting them into fixed cells, which in turn divide and produce blocked cells trapped within
the tumor mass.

In this model, three cell types were treated as separate populations with distinct growth
dynamics. A similar pseudo-spatial method was used by Qian et al. [82] to explore cooper-
ator and defector dynamics, where cancer cells actively modify their microenvironment to
enhance survival. Other techniques for incorporating space in EGT include patch models
where cell populations are subdivided into discrete groups and reaction—diffusion models,
as outlined by Durrett and Levin [83], [84]. These approaches, along with recent ef-
forts [85], [86], highlight the transformative impact of spatial realism on cancer modeling,
producing more accurate and biologically consistent population dynamics.

14



A Comprehensive Review of Game Theory Applications in Modeling Cancer Progression

The role of spatial structure in game-theoretic cancer modeling is summarized in Table 5.
Integrating these spatial dimensions enables deeper insights into tumor growth dynamics,
treatment resistance, and the design of spatially informed therapeutic interventions.

TABLE 5. A review of models considering spatial effects in cancer modeling
with game theory.

Ref. Model Type | Purpose of the | Success Evalua- | Key Notes
No. Model tion
[67] Prisoner’s Condition for coop- | Cooperation favored | Compared update
Dilemma on | eration on structured | when b/c > k across | rules; applies to regu-
Graphs populations networks lar graphs and social
networks
[72] Evolutionary | Stability and in- | Extra term in repli- | Extended uninvadabil-
Game on | vasion on graph- | cator equation; sta- | ity to regular and het-
Graphs structured popula- | bility conditions de- | erogeneous graphs
tions rived
[75] Public Goods | Localized public- | Coexistence regimes | Benefit diffusion
Game on | good interactions | and spatial cluster- | beyond neighbors;
Voronoi Net- | among tumor cells ing via sigmoid ben- | network heterogeneity
work efit emphasized
[78], | Evolutionary | Temporal fluctua- | Variability increases | Moran process with
[79] Game  with | tions in selection | heterogeneity;  fix- | stochastic fitness; mu-
Fluctuating and heterogeneity ation  probabilities | tation effects included
Environments shift
[81] | Pseudo- Melanoma—fibroblast | Predicted fibroblast- | Paracrine loops mod-
Spatial ~ Ap- | interactions in | enhanced melanoma | eled; stromal targeting
proach growth and resis- | survival suggested
tance
[82] | Pseudo- Competition and | Subclones alter car- | Three cell types mod-
Spatial Multi- | niche  construction | rying capacity and | eled; niche feedback in-
Population by metastatic sub- | invasion dynamics corporated
Model clones
[83], | Patch Spatial discreteness | Structure stabilizes | Patch-based and re-
[84] and Reac- | and local interaction | coexistence; invasion | action—diffusion mod-
tion—Diffusion | effects thresholds shift els compared
Game
[87] Hawk-Dove Resource-driven Stable mixed strate- | Resources added to
Game with | strategic interactions | gies under resource | payoffs; mean-field and
Resource and heterogeneity variability lattice analyses used
Fluctuations

7. Microarray Game Theory for Gene Expression Analysis

Microarray technology, a relatively recent innovation, enables the simultaneous quan-
tification of gene expression levels (i.e., mRNA abundance) for thousands of genes. Through
gene expression microarrays, researchers can continually generate matrices of gene expres-
sion data, where each row represents a gene and each column corresponds to a sample
or experiment (e.g., multiple patients with a genetic disorder), thus capturing observable
biological effects.
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Various analytical models have been developed to infer gene functions, interactions, and
dynamic behaviors under different biological conditions from these matrices (see [88], for
example). One such method, based on coalition games, is introduced in [89]. A key ad-
vantage of this approach lies in its ability to assign numerical indices such as association
indices that reflect the extent to which each gene is associated with a given condition (e.g.,
a tumor), while accounting for the expression patterns of other genes.

In [89], the association frequency of all gene subsets with specific conditions is represented
using a coalition game framework, referred to as the microarray game. Within this model,
the association index of each gene is computed using the Shapley value [90], resulting in
a unique relational metric that satisfies a set of properties described in [89]. A higher
Shapley value for a gene within a given microarray game indicates a stronger association
between that gene and the genomic mechanisms underlying the studied condition [91].

8. Modeling Cancer Treatment with Game Theory

A widely accepted principle in cancer treatment involves administering the highest
possible drug dose in the shortest feasible time frame known as maximum dose strategies.
The concept of the Maximum Tolerated Dose (MTD) has long been a cornerstone of can-
cer therapy and serves as the basis for clinical evaluation in most drug trials. However, it
has not been universally adopted as a suitable strategy for all cancer types [92].

A major limitation of this approach lies in the assumption that resistant cancer cell popu-
lations do not exist prior to treatment. From an evolutionary standpoint, this assumption
is problematic. Administering high-dose treatments to eliminate the maximum number of
cancer cells can inadvertently promote the growth of resistant populations. Conversely,
delivering lower doses at optimized intervals may reduce toxicity and stimulate the immune
response. Although MTD-based strategies often yield initial success, they frequently fail
over time, leading to treatment relapse. Gatenby and Frieden modeled the impact of such
treatments on tumor progression using mathematical equations [93].

Their analysis demonstrated that continuous treatment with a fixed chemotherapy dose
effectively eliminates drug-sensitive cells, but allows a small population of resistant cells to
survive and proliferate unchallenged. This phenomenon, known as Competitive Release,
is illustrated in Figure 5-A. To address this issue, alternative scheduling methods such as
metronomic chemotherapy have been proposed. This approach involves alternating peri-
ods with and without drug administration, offering a potential improvement over constant
MTD therapy [94].

However, the effectiveness of metronomic therapy remains inconsistent. Some in silico
studies suggest it may outperform MTD-based protocols [95], but other research indicates
that while metronomic therapy can extend survival, it still fosters resistance in various
forms. Moreover, preclinical and clinical investigations, particularly involving metastatic
melanoma, have not consistently demonstrated superiority over MTD-based treatment.
A core limitation of both MTD and metronomic strategies is their reliance on fixed dos-
ing schedules, despite the tumor’s high sensitivity to therapeutic variation. Adaptive
therapy strategies based on the competition between sensitive and resistant cancer cells
have emerged as the most successful evolution-informed approaches to cancer treatment.
Within tumors, cancer cells compete with stromal cells for essential nutrients, space, and
survival signals. Drug-resistant cells may evade apoptosis due to these competitive dy-
namics.

An alternative therapeutic perspective advocates maintaining a sizable population of drug-
sensitive cells during treatment, thereby limiting tumor growth to a manageable level. In
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FIGURE 5. Principle of Adaptive Therapy. (A) Under MTD strategy, con-
tinuous treatment with a fixed dose (yellow band) leads to competitive
release, relapse, and treatment failure. (B) Adaptive Therapy (AT) ad-
justs drug dosage and timing based on tumor progression (yellow bars),
aiming to reduce tumor burden with maximal inhibition cycles [96].

this framework, the optimal drug dose should be the minimum necessary to trigger a
therapeutic response. Once the tumor shrinks to an acceptable size, treatment should be
paused. Although regrowth may occur, the dominant cell population will be sensitive,
allowing for re-initiation of treatment cycles (Figure 5-B).

The first mathematical model of adaptive therapy, introduced by Gatenby et al. [97], used
equations to simulate competition among tumor cell subpopulations. This model was ap-
plied to analyze responses to MTD, metronomic, and adaptive strategies across tumors
with varying resistance profiles. Both theoretical interpretations and simulations indi-
cate that adaptive therapy can significantly improve survival compared to conventional
approaches. Supporting experimental evidence from xenografted ovarian cancer treated
with carboplatin confirmed the practicality of adaptive therapy, showing that tumors could
be managed using progressively lower drug doses and extended intervals compared to MTD
protocols.

This foundational model has inspired the development of new frameworks designed to opti-
mize adaptive strategies, better understand tumor ecology, and expand their applicability
across diverse cancer types. Recent clinical trials have further shown that adaptive drug
regimens can outperform traditional treatments based on continuous MTD use. Unlike
rigidly planned therapies, adaptive protocols dynamically adjust dosage in response to the
tumor’s evolving state.

In [98], Martinez analyzed a dataset comprising 590 non-small cell lung cancer patients
who had received either chemotherapy or immunotherapy. The study aimed to compare a
game theory—based model incorporating the evolution of treatment resistance with classical
mathematical approaches. The population growth functions examined included exponen-
tial, logistic, general Gompertz, Gompertz, Bertalanffy, and classical Bertalanffy models.
Notably, this research marked the first application of Stackelberg game theory to cancer

17



F. Tavakoli, D. Mohammadpur and J. Salimi Sartakhti

modeling using a large clinical cohort. Cancer cell responses to treatment were modeled
as an evolutionary game, consistent with approaches presented in [41]. The physician’s
decision variable (m) represented the dose of either docetaxel (a chemotherapy drug) or a
PD-1 immune checkpoint inhibitor (MPDL3280A).

Since no patient in the dataset received both treatments concurrently, a single model was
employed to describe both therapeutic options. In chemotherapy, the dose rate (m) could
vary continuously from 0 to 1, where m = 1 corresponds to the maximum tolerated dose
(MTD) and m = 0 signifies no treatment. By contrast, immunotherapy decisions were
binary: either treatment was administered (m = 1) or withheld (m = 0), as reviewed
in [9]. The model assumes a constant dose for both treatments unless chemotherapy is
delivered intermittently, in which case m can fluctuate between 0 and 1.

The biological-evolutionary dynamics of cancer were represented by a population vector
x, where treatment resistance was modeled as a continuous trait u € [0,1]. Here, u = 0
denotes full sensitivity to treatment, and u = 1 indicates complete resistance. Popula-
tion and trait dynamics were described using the fitness-generating function G [99]. The
per capita growth rate of cancer cells, expressed as G(u,x,m), defined the population
dynamics via equation (2):

& = 2G(u,xz,m) (2)
The evolution of the resistance trait was modeled by equation (3):
oG
. 0G 3
U=0 (3)

where the parameter o controls the rate of evolutionary change and may be affected by
factors such as genetic variance or mutation rate.

To effectively apply game-theoretic principles to cancer treatment design, detailed knowl-
edge of both the tumor’s biological composition and its evolutionary responses to therapy
is essential. In [100], Gaska et al. investigated how transcriptional data could be used
as input for game theory models to forecast glioblastoma organoid responses to radiation
therapy. They used both supervised and unsupervised learning approaches to extract cel-
lular compositions and identify the proportions of cancer cell subtypes in patients treated
with radiation. Replicator equations were then employed to model transient dynamics
and identify evolutionarily stable states within these organoids. This methodology offers
a promising avenue for designing evolution-informed cancer therapies.

While shifts in population-level characteristics such as cell density or size pertain to bio-
logical dynamics, changes in trait distribution (quantitative or qualitative) reflect evolu-
tionary dynamics. Since the total cell population in the studied organoids was constant,
only evolutionary aspects were analyzed. Replicator dynamics, a foundational tool in evo-
lutionary game theory, remain widely used to model processes such as natural selection
and genetic variation.

In recent years, evolutionary game theory (EGT) has gained traction in oncology as a
means to inform personalized treatment strategies. Rather than aiming to eliminate all
tumor cells, EGT-based approaches seek to reduce tumor cell fitness relative to nor-
mal cells, thereby managing tumor burden. In metastatic cancer, treatment strategies
should consider lesion count, timing of lesion emergence, and biological heterogeneity.
For oligometastatic patients, combining systemic and local interventions—such as inter-
ventional oncology—may offer superior outcomes. Notably, targeting a single lesion may
trigger an immune response against others, a phenomenon known as the abscopal effect,
which has been examined and modeled in [101].
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To explore pediatric sarcoma treatment, Reed et al. introduced a G-function defined as
follows [102] (equation4):

G =1 ((1=v)(1 =) (1 = vg) = =) = ua (1) = pa(v2) = pig(vs) (4)

Here, v; denotes the resistance to treatment i € {1,2,3}, r is the intrinsic growth rate,

and p;(v;) = represents the death rate induced by treatment i. Parameters m;,

my;
k‘i + bﬂh
ki, and b; describe the strength of the treatment, intrinsic resistance, and benefits of re-
sistance, respectively. In this equation, K represents the carrying capacity of the tumor
environment. It defines the maximum population size (denoted by x) that the system can
sustain under given biological and environmental constraints. This function (G) offers a
framework for assessing therapeutic protocols, including adaptive strategies for metastatic
prostate cancer, as detailed in [103].
In [104], Salvioli et al. modeled two cell populations: sensitive and resistant. The goal
was to identify conditions under which tumor burden could be stabilized. Using a Stack-
elberg evolutionary game framework, the physician acted as the leader, selecting dosing
strategies to maximize a quality-of-life-based objective function incorporating tumor size,
resistance level, and treatment intensity. A complementary model was proposed in [105],
where simulations confirmed the strategy’s efficacy and potential clinical utility.
In [106], Liu et al. found that combining Chinese herbal medicine with chemotherapy
improved therapeutic outcomes. When tumors exhibited aggressive growth, chemother-
apy doses were increased after reaching a critical threshold in Chinese medicine efficacy.
Conversely, during slower tumor progression, both therapies were simultaneously adjusted
after threshold activation. Using Steinberg game theory, the authors proposed coordinated
strategies for minimizing toxicity and enhancing efficacy.
Mahmoodifar and Newton [107] applied an evolutionary rock-paper-scissors game frame-
work to model cancer—-immune interactions among healthy cells, T-cells, and cancer cells.
Chemotherapy and immunotherapy dosing schedules were modeled as control functions.
Results suggested that optimal chemotherapy duration aligns with one-quarter of the can-
cer-immunity cycle, while immunotherapy should span half a cycle and precede chemother-
apy for maximum efficacy.
While therapeutic strategies aiming to rapidly reduce tumor volume often correlate with
clinical response, they frequently foster treatment resistance. Evolution-informed ap-
proaches seek to delay resistance and preserve intratumoral heterogeneity. Recent trials
have shown encouraging outcomes, with empirical data guiding parameter selection and
treatment design. A major consequence of resistance-driven dynamics is ”competitive re-
lease,” where resistant clones expand following aggressive treatment. This effect can be
mitigated by tailoring drug dosage and adjusting the initial population composition.
Tumor heterogeneity plays a central role in resistance evolution. Kaznatcheev et al. [108]
developed a method to quantify effective evolutionary games in cultures of non-small cell
lung cancer—specifically comparing cells sensitive and resistant to the ALK inhibitor alec-
tinib. Although focused on cancer cell interactions, this method is applicable to broader
studies of microscopic evolutionary systems.
While extensive research has focused on single-drug therapies, clinical treatment often
involves multidrug protocols. Optimizing these strategies is challenging due to combina-
torial complexity, cellular interactions, and dosing schedules. Nevertheless, evolutionary
game theory presents a powerful framework for designing dynamic, adaptive therapies that
respond to tumor evolution and enhance long-term clinical outcomes.
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The study [109] investigates evolutionary strategies in two-drug cancer therapies, intro-
ducing an approach in which therapeutic agents are categorized into primary and sec-
ondary roles. The primary drug is selected based on its superior efficacy and/or mini-
mal toxicity, whereas the secondary drug is deployed specifically to target subpopulations
of cancer cells that exhibit resistance to the primary agent. Mathematical simulations
demonstrate that this primary—secondary approach prolongs time to progression (TTP)
and patient lifespan compared to conventional therapies that do not account for evolu-
tionary dynamics. Furthermore, the study presents a clinical trial model for abiraterone-
adaptive therapy in metastatic castration-resistant prostate cancer. Simulation results
indicate that the co-administration of docetaxel during abiraterone treatment substan-
tially enhances TTP.

Recent clinical trials have shown that adaptive therapies—those which adjust treatment
regimens based on tumor response can outperform standard therapies that follow the max-
imum tolerated dose (MTD) protocol. Unlike fixed dosing strategies, adaptive therapies
modify dosage in real-time according to tumor status. In [110], a framework for optimizing
adaptive treatment policies is proposed, utilizing an evolutionary game theory model of
cancer. Based on predefined therapeutic goals, the study employs dynamic programming
to determine optimal treatment strategies. Specifically, total drug dosage and recovery
time are optimized via the Hamilton—Jacobi-Bellman equation. Comparative analysis
reveals that adaptive treatment policies significantly reduce total drug usage relative to
MTD-based strategies. The findings underscore the utility of optimal control theory in
guiding the development of adaptive treatment protocols and support their integration
into clinical trial design.

In the context of Metastatic Clear Cell Renal Cell Carcinoma (mCCRCC), recent treat-
ment strategies have markedly improved patient survival rates. Many patients receive
sequential treatments outside of clinical trial frameworks. Voog et al. recently reported
that a substantial subset of patients those with favorable or intermediate prognoses re-
tains the capacity for further therapeutic interventions even after two lines of treatment,
thereby extending survival. According to data from the International Metastatic Renal
Cell Carcinoma Database Consortium (IMDC), overall survival spans 57 months for pa-
tients with good or intermediate prognoses, compared to 19 months for those with poor
prognoses [111].

Tumor heterogeneity remains a central factor influencing drug resistance and disease pro-
gression. Advances in sequencing and single-cell technologies have only recently enabled
detailed characterization of intra-tumoral genetic diversity. These datasets are essential
for the construction of molecular models that explain tumor development, evolutionary
adaptation, and therapeutic response. Recent efforts in this domain have resulted in
mathematical models that aim to predict treatment outcomes and resistance trajectories
in cancer [112].

Research into game theory—based cancer treatment models is comprehensively reviewed
and synthesized in Table 6. This summary provides a comparative analysis of various
modeling approaches, offering researchers insights into current limitations, opportunities
for refinement, and directions for developing more effective therapeutic strategies.
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TABLE 6. A Review of Game Theory Models in Cancer Treatment Re-

search.
Ref. Model Type | Purpose of the | Success Evalua- | Key Notes
No. Model tion
[97] Evolutionary | Simulate tumor | Adaptive ther- | Three-strategy game;
replica- response to chemo | apy prolonged | dose modulation; sup-
tor—-game types; validate with | progression vs. | ported by OVCAR ex-
model xenografts MTD/metronomic periments
[98] | Game- Fit clinical tumor | GT model outper- | Models resistance as
theoretic trajectories with | formed standard fits; | trait; first large clinical
NSCLC resis- | evolving resistance captured U-shaped | dataset application
tance model responses
[100] | Replicator Predict GBM | Matched  hypoxia- | RNA-seq data pro-
dynamics 4+ | organoid response to | driven dynamics; | cessed to infer cell
transcrip- radiotherapy fitted cell propor- | types; replicator-based
tomics tions over time forecasting
[101] | Conceptual Guide interven- | Proposed delay of | Combines local abla-
EGT frame- | tional oncology in | systemic shifts; ab- | tion with systemic 10O;
work oligometastatic pa- | scopal effects; pend- | EGT leadership dy-
tients ing validation namics
[103] | G-function Model clonal com- | Reproduced tumor | Uses fitness-generating
eco- petition and therapy | stages; identified sta- | functions; recom-
evolutionary sequencing in sarco- | ble/cyclic equilibria | mends  timing  for
model mas chemo/immuno
[104] | Stackelberg Optimize dose strat- | Evolution-aware Physician as leader;
evolutionary egy for tumor stabi- | therapy = improved | compares MTD,
game lization QoL, minimized | ecology-only, full con-
dose/resistance trol
[105] | Stackelberg Steer tumor dynam- | Resource control | Adds patch/resource
eco- ics via resource ma- | shifted tumor to | dimensions; formal
evolutionary nipulation desired phenotype control setup; leader
control adjusts environment
[106] | Steinberg Model Timing guidelines for | Doctor chooses chemo;
game (doctor | chemo—Chinese dual treatment; re- | tumor adapts; Chinese
vs tumor) medicine synergy duced toxicity medicine as modulator
[107] | RPS  evolu- | Align Optimal chemo = | Models cells as RPS
tionary game | chemo/immuno % cycle, immuno = | game; schedules as
timing  with  tu- %; immuno—chemo | time-dependent  con-
mor—immune cycles | best control trols
[108] | In vitro game | Measure CAF/drug | Switch from Leader | Tagged cells co-
assay impact on NSCLC | to Deadlock game | cultured; growth 8
cell fitness under conditions fitness B payoff matrix;
first empirical assay
[109] | Primary— sec- | Design two-drug pro- | Delayed progression; | Combines selection, re-
ondary Stack- | tocol with role sepa- | docetaxel benefit | sistance fitness, QoL;
elberg EGT ration during abiraterone | guides timing decisions
cycles
[110] | Dynamic pro- | Compute  optimal | Reduced drug wuse; | Solved HJB PDE;
gramming + | adaptive therapy | expanded  recover- | derived feedback dos-
EGT policies able tumor states; | ing; compared control
trade-offs analyzed strategies
[111] | Observational | Evaluate sys- | Median OS 57 mo | IVOIRE study sup-
cohort study | temic agents post—| (good risk) vs 19 mo | ports TKI rechallenge;
VEGFR- TKI in | (poor); > 4 lines tol- | improved survival with
RCC erated sequential therapy
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9. Experimental Case Studies Using Game Theory in Cancer Research

Recent advances in mathematical oncology have demonstrated the practical utility of
game-theoretic models through experimental validation and clinical application. Several
studies have successfully bridged theoretical frameworks with biological data, confirming
the relevance of strategic modeling in cancer dynamics and treatment optimization.

For instance, Archetti et al. [46] experimentally validated a public goods game model in
neuroendocrine pancreatic cancer, showing that IGF-II production heterogeneity is main-
tained through frequency-dependent selection. Similarly, Gatenby et al. [97] applied an
evolutionary game model to ovarian cancer xenografts, demonstrating that adaptive ther-
apy prolongs tumor control compared to conventional dosing strategies.

Kaznatcheev et al. [108] introduced an empirical “game assay ”by co-culturing sensitive
and resistant non-small cell lung cancer (NSCLC) lines, quantifying payoff matrices and
revealing a shift in game class under drug pressure. Gaska et al. [100] integrated transcrip-
tomic data from glioblastoma organoids into replicator dynamics, predicting treatment-
induced resistance trajectories.

Clinical datasets have also supported game-theoretic predictions. Martinez et al. [98]
showed that models incorporating resistance evolution outperform classical growth models
in fitting tumor trajectories of NSCLC patients. Zhang et al. [121] and West et al. [109]
applied evolutionary strategies to metastatic prostate cancer, guiding adaptive therapy
protocols that delay resistance and improve patient outcomes.

In a separate study, Liu et al. introduced a Steinberg game framework to optimize
chemotherapy regimens by incorporating Chinese medicine as a dynamic and adaptive
component [113]. Their experimental results highlighted that strategically coordinating
herbal treatments with chemotherapy can minimize drug toxicity and enhance therapeutic
outcomes, particularly in tumors exhibiting aggressive proliferation.

Leither et al. developed an agent-based modeling approach leveraging spatial statis-
tics to infer game-theoretic interactions between drug-sensitive and drug-resistant cancer
cells [114]. The study revealed that spatial patterns in tumor cell distributions encode
underlying ecological dynamics, allowing treatment strategies to be tailored using single
time-point imaging without requiring full temporal tracking.

Li et al. presented an optimal control framework for adaptive cancer therapy rooted in
evolutionary game theory and pharmacokinetics [115]. Their simulations demonstrated
that maintaining ecological balance between sensitive and resistant populations helps sup-
press overall tumor burden and extend survival, outperforming conventional treatment
strategies. These experimental case studies underscore the translational relevance of game
theory in oncology not only in advancing conceptual models but also in guiding clini-
cal decision-making, refining treatment schedules, and shaping next-generation adaptive
therapy designs.

10. Discussion

This research presents a comprehensive overview of recent advances in cancer modeling
through the lens of game theory. Within tumors, cells simultaneously engage in competi-
tion for space and resources and cooperate by secreting factors that promote tumor growth
and invasion. These interactions between cancer cells and their microenvironment play a
crucial role in cancer progression.

Cooperation among cancer cells underpins several hallmarks of cancer and is facilitated by
diffusible factors that influence both cancer and stromal cells. Various molecules, genes,
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and signaling pathways are involved in these processes. In cooperative environments,
mutant cells that stop producing growth factors can still benefit from those secreted by
neighboring cells, thus avoiding the metabolic cost of production. These mutants gain
a fitness advantage and may proliferate more rapidly. Over time, subclones originat-
ing from such non-producing cells may outcompete and potentially eliminate the original
growth factor-producing subclones. These dynamics highlight the intricate interplay be-
tween cooperation and competition in tumor evolution and underscore the significance of
understanding these mechanisms to develop effective cancer therapies.

A recent study [116] identified possible altruistic behavior in breast cancer cells, where a
small subpopulation increases the overall tolerance to the chemotherapeutic agent taxane.
This subpopulation is characterized by high expression of the noncoding RNA miR-125b,
and it secretes proteins that activate PI3K, thereby offering survival benefits to neighbor-
ing cells during taxane exposure.

Under evolutionary game theory [117], the notion of profit aligns with Darwinian princi-
ples. The players are proliferating cells including cancer, stromal, and peripheral cells while
strategies represent phenotypes arising from mutations, distinguishing different subclones
within the population. Optimization occurs via natural or clonal selection, which adjusts
strategy frequencies in proportion to their fitness over time. Although game theory does
not offer new insights into hallmarks that are not frequency-dependent such as genome
instability or the unlimited replicative potential of cancer cells it is particularly useful
for analyzing interactions that are frequency-dependent. These include self-sufficiency in
growth signals, evasion of apoptosis and the immune system, neoangiogenesis, and metas-
tasis. Such hallmarks rely on interactions among cancer cells or between cancer cells and
stromal cells.

Evolutionary game theory offers a structured approach to dissect these interactions, en-
hancing our understanding of the forces driving cancer progression and therapy resistance.
Modeling these dynamics helps reveal how phenotypes compete and cooperate within the
tumor microenvironment, which could guide the development of more effective treatment
strategies.

The Prisoner’s Dilemma (PD) is one of the simplest games illustrating the challenge of
cooperation. Widely discussed in evolutionary biology and economics, PD shows how co-
operation can emerge over time through mechanisms like genetic relatedness or repeated
interactions. In cancer research, game theory has also been applied through variants such
as the chicken game [118], [119]. PD serves as a foundational model for exploring the
evolution of cooperative behaviors.

Subsequent cancer studies [120], [121], [122], [123] largely applied pairwise game models.
While valuable, such models fall short of capturing the full complexity of cancer. In real-
ity, most cooperative behaviors in cancer are better explained through multiplayer games,
where payoffs stem from collective interactions among many cells. This is especially rele-
vant given the role of diffusible factors—such as releasable growth factors [124], [125] in
these processes.

Multiplayer game models offer a richer framework for understanding the dynamics of can-
cer cell interactions. These models reflect the collective behaviors that underpin tumor
growth and progression. For example, when cancer cells produce and diffuse growth fac-
tors, they generate a supportive microenvironment that fosters development and therapy
resistance. Modeling these interactions as multiplayer games reveals how cancer cells co-
operate to maximize survival and proliferation.
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Furthermore, such models help pinpoint therapeutic targets by exposing critical interac-
tions that sustain tumor growth. Disrupting the production or diffusion of growth factors,
for instance, could break down cooperative networks and make cancer cells more vulnera-
ble to treatment. By integrating multiplayer game theory into cancer research, scientists
gain deeper insight into tumor biology and uncover new strategies for effective therapy.
Experimental validation of game theory in cancer began with studies on insulin-like growth
factor II (IGF2), focusing on cell proliferation and apoptosis evasion in pancreatic neu-
roendocrine tumors. Other applications include research on isocitrate dehydrogenase 1
(IDH1) mutant cells in secondary glioblastoma progression, the response of prostate can-
cer to intermittent androgen suppression therapy [126], and metabolic exchanges between
hypoxic and oxygenated cancer cells—often mediated by lactic acid production [126] along
with studies by Varzhenis [127], [128], [129].

Interactions between tumor cells and stromal cells can also be viewed through a coop-
erative lens. For example, tumors recruit and activate normal fibroblasts, transforming
them into cancer-associated fibroblasts (CAFs). These CAFs then secrete growth factors
and cytokines that promote tumor progression [130]. While some may interpret this re-
cruitment as coercion, cancer cells also demonstrate cooperation by producing diffusible
factors that attract and activate fibroblasts.

These growth factors further support tumor expansion through neoangiogenesis or im-
mune system modulation—either by stimulating or suppressing different immune cell
types. Across all these scenarios, cancer cells cooperate by releasing factors that prompt
stromal cells to build a more favorable environment. Game theory has been invaluable
for interpreting these complex tumor-stroma dynamics, especially in the context of matrix
metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), which are
central to prostate cancer progression and the behavior of multiple myeloma [131], [132].
A notable case of intratumoral cooperation is the Warburg effect [133], which also hinges
on diffusible factors. Under hypoxic conditions, some glycolytic cancer cells produce lac-
tate, which neighboring cancer cells then use as an alternative energy source [134].

The Warburg effect is not solely an adaptive response to hypoxic conditions; it can also
manifest under normoxic environments. Its principal role may involve acidification of
the tumor microenvironment via the release of diffusible metabolites. This acidification
contributes to the induction of normal cell death, facilitates tumor invasion, promotes
immunosuppression, and enhances the secretion of growth factors [135], [136]. The inher-
ently cooperative nature of the Warburg effect is evident in its collective benefits to the
tumor. Although glycolysis is energetically less efficient than oxidative phosphorylation in
terms of ATP yield, it offers strategic advantages by modifying the microenvironment to
favor tumor progression. The lactate and other metabolites produced by glycolytic cancer
cells create a hostile niche for healthy cells while concurrently supporting tumor expansion
and invasion.

Cancer cells may also trigger a similar metabolic shift in adjacent cancer-associated fibrob-
lasts (CAFs), a phenomenon termed the ”"reverse Warburg effect” [137]. In this scenario,
CAFs secrete metabolites that are readily utilized by cancer cells, thereby amplifying their
growth and metastatic capabilities [138], [139]. Understanding both the Warburg effect
and its cooperative dimensions is essential for developing targeted therapies. Disrupting
these metabolic symbioses may present viable strategies for inhibiting tumor progression
and metastasis. Game theory offers a powerful framework for modeling and manipulating
such interactions, facilitating more informed and strategic therapeutic interventions.
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Cooperation among cancer cells is exemplified by the action of diffusible molecules oper-
ating through autocrine and paracrine signaling mechanisms. These signals significantly
influence cell survival and proliferation. Growth factors produced by cancer cells not only
stimulate proliferation and angiogenesis but also aid in circumventing programmed cell
death and immune surveillance. This network of interactions extends beyond tumor cells
and includes reciprocal exchanges with stromal components.

Moreover, cooperativity encompasses the broader spectrum of releasable molecules, includ-
ing metabolites resulting from the Warburg effect and various small biomolecules. Such
compounds remodel the microenvironment to favor tumor survival and dissemination.
One notable cooperative mechanism involves the secretion of factors that induce lipolysis
in adjacent adipocytes, releasing free fatty acids. These fatty acids are then absorbed by
cancer cells, providing essential energy for tumor growth [140]. Additionally, cancer cells
reshape the metabolic landscape during metastatic colonization. For example, colorectal
cancer cells secrete creatine kinase B-type, which interacts with hepatocyte-derived crea-
tine to produce phosphocreatine. This compound is then taken up by metastatic cancer
cells in the liver to fuel ATP generation and drive metastatic progression [141].
Tumor-derived exosomes further illustrate cooperative behavior, transmitting proteins,
lipids, and nucleic acids that influence neighboring cells and sculpt a supportive niche
for proliferation and metastasis [142]. These interactions can be conceptualized through
public goods games, where individual cancer or stromal cells act as “players” contributing
diffusible factors to a shared microenvironmental “pool.” These contributions yield col-
lective benefits such as increased proliferation, resistance to apoptosis, immune evasion,
acidification, and enhanced invasiveness.

While some microenvironmental dynamics can be modeled via two-player games including
the chicken game, the prisoner’s dilemma, the hawk-dove game, and classical evolutionary
games the architecture of tumors necessitates more complex modeling. In actual biological
settings, cells interact with multiple neighbors; for instance, monolayer cultures typically
contain about six adjacent cells, with extreme variations being uncommon [124]. These
interactions become even more intricate within three-dimensional tumor structures. Thus,
public goods models offer a more realistic and comprehensive means of describing tumor
ecology by accounting for the cumulative effects of cell contributions to the microenviron-
ment, including growth factors, metabolites, and other modulatory agents.
Game-theoretic models have also been extended to encompass interactions between medi-
cal professionals and tumors via Stackelberg’s framework. Here, physicians act as strategic
leaders, while cancer cells respond as followers, enabling sophisticated analysis of thera-
peutic decision-making. The emergence of anti-evolutionary therapies marks a pivotal
shift toward sustainable cancer management. Conventional therapies frequently drive the
evolution of resistant clones, leading to relapse. In contrast, treatments targeting the rel-
atively stable stromal cells such as immunotherapies are less prone to resistance due to
reduced mutational rates. Designing therapies that circumvent the evolutionary potential
of cancer cells requires an integration of dynamic and equilibrium principles often over-
looked in current regimens.

One innovative approach involves dose modulation to enhance competition among cancer
subclones. By applying evolutionary principles, such strategies aim to exploit competi-
tive cellular interactions to hinder resistance formation, aligning with the rationale behind
Darwinian or evolutionary-informed therapies [143].

Traditionally, the standard of care (SoC) relies on the maximum tolerated dose (MTD),
administering the highest dose a patient can endure to maximize tumor eradication. MTD
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remains effective for certain aggressive cancers such as late-stage lung cancer [144]. How-
ever, this approach often triggers resistance and eventual treatment failure in other malig-
nancies [143]. Adaptive therapy offers an alternative paradigm by adjusting drug dosages
to sustain competition among sensitive and resistant clones, maintaining a dynamic equi-
librium that delays dominance by resistant populations.

This strategy harnesses intratumoral evolutionary dynamics, promoting prolonged treat-
ment efficacy while minimizing resistance. By eschewing blanket high-dose approaches in
favor of strategic modulation, adaptive therapy represents a forward-thinking model that
prioritizes sustainability and long-term disease control.

The application of adaptive therapy underscores the critical importance of incorporating
evolutionary and ecological principles into cancer treatment design. By understanding and
modulating the competitive dynamics within the tumor microenvironment, researchers and
clinicians can develop more nuanced therapeutic strategies that enhance patient outcomes
and minimize the risk of treatment failure. This innovative approach calls for sustained
research efforts and clinical trials to refine and optimize adaptive therapy protocols across
diverse cancer types.

Among the emerging strategies is the deliberate alteration of selection pressures within
tumors to favor the proliferation of more benign or treatment-responsive subclones. Such
tactics seek to harness intra-tumoral evolutionary dynamics, steering them toward less
invasive phenotypes. Another promising avenue involves the use of synergistic combina-
tion therapies that adapt in real-time to cancer cell evolution, thereby improving overall
therapeutic efficacy [145].

A particularly intriguing strategy involves the genetic engineering of tumor cells to elim-
inate genes encoding essential growth factors. When reintroduced into the native tumor,
these modified cells gain a proliferative advantage by exploiting growth factors secreted
by unmodified cells—a phenomenon referred to as the “autologous cell defect” [146].
Through clonal selection, these engineered cells may gradually dominate the tumor popu-
lation. Eventually, the tumor may collapse due to the scarcity of essential growth factors,
or at minimum, the deleterious effects of excessive cytokine production could be miti-
gated. These approaches illustrate the potential of leveraging both genetic engineering
and evolutionary theory to design therapies that are simultaneously effective and resistant
to relapse.

The challenge of fostering cooperation among inherently self-interested entities be they bi-
ological cells or individuals is nontrivial. Sustainable cooperation remains rare and fragile.
In cancer, malignant transformation occurs in a limited subset of cells, which subsequently
evolve cooperative mechanisms to promote tumor progression. Game theory offers a robust
analytical framework for identifying and disrupting such cooperative behaviors and for in-
hibiting clonal expansion. By applying game-theoretic concepts, researchers can inform
the design of anti-evolutionary therapies aimed at preventing the rise of drug-resistant
cancer cell populations [147].

Recent research demonstrates that game theory can yield viable alternatives to the con-
ventional maximum tolerated dose (MTD) strategy. Rather than relying exclusively on
aggressive dosing, game theory-informed approaches focus on predicting and directing the
evolutionary trajectories of tumors. This enables the development of adaptive therapies
that anticipate and counteract the evolutionary responses of cancer cells [148].
Numerous game-theoretic models explaining cancer dynamics have been rigorously val-
idated with empirical data [149], [150]. These validations reinforce the credibility and
applicability of such models in elucidating tumor behavior. Crucially, interdisciplinary
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collaboration between theorists and experimental scientists is essential for translating evo-
lutionary therapy concepts into clinically effective treatments. Such synergy facilitates the
development of personalized interventions that improve patient outcomes and potentially
achieve curative results.

A growing domain for the application of game theory is machine learning. In a recent
study [151], a novel framework integrated Shapley values with game-theoretic principles
and Federated Learning (FL) to predict breast cancer outcomes. In this paradigm, multiple
data holders collaboratively train a model while preserving privacy, with each participant
acting as a strategic agent making decisions about engagement. Payoff functions were
introduced to incentivize model optimization at the local level.

Graph Neural Networks (GNNs), which are widely employed for tasks such as node clas-
sification, graph classification, and link prediction, have recently been paired with game-
theoretic methods for interpretability. These approaches treat model features as players
in a cooperative game, calculating their importance based on marginal contributions to
decision-making coalitions [152].

In a related study, Liu et al. [153] applied a Shapley Additive Explanation framework
grounded in cooperative game theory to identify predictive factors in breast cancer recur-
rence. Using real-world data from 1,629 patients, they successfully uncovered key variables
linked to disease outcomes.

Despite the promise of machine learning models, limitations in generalizability, inter-
pretability, and reproducibility hinder their clinical adoption. Black-box models often yield
high accuracy but lack the transparency required for clinical trust. To address these chal-
lenges, a recent study [154] proposed a hybrid framework combining Kolmogorov—Arnold
Networks (KANs) with evolutionary game theory, enabling more interpretable and adapt-
able diagnostic models.

While there is growing interest in integrating game theory into machine learning partic-
ularly for cancer diagnosis and data-driven modeling this study specifically focuses on
game-theoretic modeling of cancer cell behavior. Therefore, a comprehensive review of
game theory applications in cancer identification and prediction via machine learning is
beyond our scope.

11. Conclusions and Future Work

Game theory has been applied across a wide range of disciplines [155], [156]. This
comprehensive review highlights the transformative potential of game theory, particularly
evolutionary game theory, in advancing our understanding of cancer progression and treat-
ment design. By modeling the strategic interactions among cancerous and non-cancerous
cells, researchers have been able to simulate phenotypic competition, treatment-induced
selection, and microenvironmental adaptation. These frameworks have yielded valuable
insights into tumor heterogeneity, therapy resistance, and dynamic treatment optimiza-
tion.

Despite the promising alignment with real-world cellular behavior, evolutionary game the-
ory models face several challenges. One significant limitation is the comprehensive under-
standing required of all phenotypes and their interactions. As the number of phenotypes
increases, the likelihood of achieving a stable state within the population diminishes. Ad-
ditionally, many models simplify the payoffs for phenotype interactions, treating them as
static and straightforward. However, in the dynamic environment of tumors, the payoffs
are typically non-static and time-dependent. Moreover, not all cells experience the same
payoffs in their interactions with other cells. Local effects and spatial considerations play
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crucial roles in these interactions. The structure, texture, and type of cellular interactions
significantly influence cellular fitness.

Another limitation of game theory models in cancer evolution is their single-scale focus.
While this approach can be applied at various levels within the cell, between cells, and at
the tissue level most models tend to examine only one of these levels at a time.

To address these gaps, future research should advance toward developing dynamic payoff
structures that respond in real time to treatment effects, cellular adaptation processes,
and environmental fluctuations. Enhancing spatial fidelity through agent-based modeling
is equally crucial, allowing researchers to capture local cellular interactions, niche con-
struction mechanisms, and diffusion dynamics within the tumor microenvironment. A
comprehensive understanding of cancer progression further demands multiscale integra-
tion, where models connect intracellular signaling pathways with intercellular evolutionary
games and tissue-level growth patterns. Moreover, incorporating both epigenetic and non-
genetic sources of heterogeneity will be essential, as they underpin cancer cells’ ability to
switch strategies and evade therapy. Finally, grounding theoretical models in biological
reality calls for robust empirical validation pipelines leveraging transcriptomic profiles,
histological analyses, and medical imaging to tailor simulations to individual patient land-
scapes.

Promising new directions include hybrid frameworks that integrate game-theoretic logic
with machine learning, real-time adaptation algorithms for personalized therapy schedul-
ing, and spatial inference techniques using single time-point imaging to deduce strategic
cell interactions.

In closing, the application of game theory to cancer research has matured from abstract
modeling to biologically and clinically grounded frameworks. Overcoming existing limi-
tations and extending model sophistication will be critical in designing adaptive, patient-
tailored therapies ultimately moving from theoretical insight to therapeutic impact.
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