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Abstract: A brain-computer interface is a hardware and software communication system through which the user will 

be able to control computers and external devices using only their brain activities. The signal processing algorithm is 

the most important part of a brain-computer interface and includes the steps of data acquisition, preprocessing or 

signal amplification, feature extraction, and classification. This research aims to design the signal processing 

algorithm of a brain-computer interface and also to improve its performance using noise reduction methods. 

Considering the importance of feature extraction and classification steps, we must choose appropriate methods in 

these steps. First, the brain-computer system, signal processing algorithm, and human nervous system and brain, 

electroencephalogram signal have been investigated. Then, the pre-processing step and noise reduction techniques, 

the feature extraction step, and the classification step, and different classifiers with their applications and 

characteristics have been introduced. Finally, a new method based on channel selection using the placement of 

electrodes has been presented, which reduces noise and significantly increases the performance of the algorithm, and 

the use of this method increases the accuracy of the system. 
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1- Introduction 

 

Brain-Computer Interfaces (BCIs) are 

communication devices that allow for conveying 

intentions solely through brain activity without 

involving muscles. For brain-computer 

communication, electrodes or sensors are placed on 

the patient’s head and skull. These brain electrode 

signals are fed to the signal amplifiers of the Data 

Acquisition (DAQ) board, which includes an analog-

to-digital converter. 

Once converted from analog to digital, the signals are 

sent to the brain-computer information processing 

algorithm to perform feature extraction and 

classification processes. 

Depending on the speed and efficiency of the chosen 

algorithm, a specific movement can be conveyed to 

the user as feedback. This feedback represents the 

output of the BCI system and allows the user to 

interact with the BCI more effectively and rapidly 

[9]. 

Test specifications 

The dataset used in this research was recorded by the 

Berlin Brain-Computer Interface Group at the Berlin 

Institute of Technology and the Berlin University of 

Medical Sciences. It corresponds to the first dataset 

of the 4th BCI Competition. This dataset was 

recorded from seven healthy individuals. During the 

recording sessions, participants performed motor 

imagery tasks without feedback. For each individual, 

two motor imagery tasks were selected from three 

classes: left hand, right hand, and foot. During the 

experiment, visual cues indicating left, right, or 

downward directions appeared on the screen, 

signaling the participant to imagine the respective 

movement. Each cue was shown for four seconds to 

allow the subject to perform the mental imagery. 

Signals were recorded using 59 electrodes, with the 

highest density placed over the brain’s motor imagery 

areas. 

(Refer to Fig.1 for electrode positioning on the head 

and corresponding channel numbers for this dataset.)

 

Fig. 1. Placement of electrodes on the head  

2- Preprocessing step in signal 

processing algorithm 

 2-1 Common Average Reference (CAR) 

   This method calculates the signal of each electrode 

by subtracting the average of all electrodes from the 

signal of the desired electrode: 

𝑦𝑖 =   𝑥𝑖 −
1

𝑁
(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑁)     (1) 

Where i=1,2,3,..., N. 

The Common Average Reference (CAR) technique is 

effective in reducing noise, such as 50Hz or 60Hz 

power line interference that is common across all 

electrodes. Because useful brain signals are typically 

concentrated in a limited number of electrodes, this 

method improves the signal-to-noise ratio by 

enhancing the brain signal relative to the average of 

all channels. However, CAR cannot eliminate 

artifacts that are not common across electrodes, such 

as:  

Ocular artifacts (EOG), Muscle artifacts (EMG) 

Eye movement signals are generally stronger near the 

frontal cortex, while muscle signals are more 

pronounced in regions close to active muscles. To 
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address such artifacts, methods like regression or 

Independent Component Analysis (ICA) are more 

suitable. [4]. 

2-2 Laplace reference 

     Laplace referencing considers the spatial 

distribution of nearby electrodes. It subtracts a 

weighted sum of the potentials of neighboring 

electrodes from the potential of the desired electrode. 

The weights are determined by the inverse of the 

distance between electrodes:  

𝑦𝑖 = 𝑥𝑖 − ∑ 𝑥𝑖𝑔𝑖𝑗   𝑛
𝑗∈𝑠𝑖

    (2) 

𝑔𝑖𝑗 =
1

𝑑𝑖𝑗
∑

1

𝑑𝑖𝑗

𝑛
𝑗∈𝑠𝑖

⁄            (3) 

Where: 

 𝑠𝑖  : set of neighboring electrodes of the i-th 

electrode 

  𝑑𝑖𝑗  : distance between electrodes i and j 

This method enhances the local signal by 

emphasizing activity at a specific electrode relative to 

its neighbors, which can improve spatial resolution. 

2-3 Independent Component Analysis 

(ICA) 

   ICA assumes that EEG signals are a mixture of 

independent sources, some of which correspond to 

useful brain activity and others to noise. 

Let: 

𝑥(𝑡) = 𝑓(𝑠(𝑡)) + 𝑛(𝑡)           (4) 

 𝑥(𝑡): observed EEG signal 

 𝑠(𝑡): source signals (independent 

components) 

 𝑓: unknown mixing function 

 𝑛(𝑡): additive noise 

The goal of ICA is to recover the sources 𝑠(𝑡)  from 

the observed mixtures 𝑥(𝑡), assuming statistical 

independence of sources. 

This is particularly useful for removing EOG, EMG, 

and other artifacts from EEG data [3]. 

3- Classification Step in BCI Signal 

Processing Algorithm  

     3-1 k-nearest neighbors classifier  (k-NNC) 

This classifier is a simple yet effective method. It 

classifies a new sample by comparing its features 

with those of known training samples and assigning it 

to the class of the majority among its k nearest 

neighbors. 

 Distance metrics such as Euclidean distance 

are typically used: 

𝒅(𝒙, 𝒙𝒊) = √∑(𝒙 − 𝒙𝒊)
𝟐              (𝟓) 

This method is intuitive and works well with small 

datasets, but can be computationally intensive with 

large datasets and sensitive to irrelevant features. 

  

     3-2 Linear Discriminant Analysis (LDA) 

LDA is widely used in BCI due to its low 

computational cost and real-time capability. It works 

by projecting the data onto a line (or hyperplane for 

multiclass problems) in a way that: 

 Maximizes between-class variance 

 Minimizes within-class variance 

LDA finds the direction  that best separates the two 

classes: 

𝘞 = 𝑆𝑤
−1(𝑚1 − 𝑚2)             (6) 

 Sw: within-class scatter matrix 
 m1,m2: mean vectors of each class 

 

 

Although LDA performs well with linearly separable 

data, it may not be suitable for non-linear problems. 

 

     3-3 Support vector machine (SVM) 

 
SVM is a powerful classifier that works by finding 

the optimal hyperplane that maximally separates 

different classes [16].  

 It uses kernel functions to map data to a 

higher-dimensional space when the data is 

not linearly separable. 
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 It maximizes the margin between classes, 

leading to better generalization. 

The decision function in SVM is: 

𝑓(𝑥) = sign ∑ (𝛼𝑖𝑦𝑖 𝐾(𝑥𝑖  , 𝑥) + b)
𝑛

𝑖=1
   (7) 

 

𝛼𝑖: Lagrange multipliers 

𝑦𝑖 : class labels 

𝐾(𝒙𝒊 , 𝒙): kernel function 

b: bias term 

 
SVM is particularly robust to noise and overfitting, 

especially when combined with regularization 

techniques. 

4- Feature Extraction Step in BCI Signal 

Processing Algorithm 
 

Common Spatial Pattern (CSP): 
CSP is one of the most effective methods used for 

feature extraction in EEG-based BCI systems. It 

transforms multi-channel EEG data into a spatial 

domain where the variance of one class is maximized 

while the variance of the other class is minimized. 

This makes it easier for classifiers to distinguish 

between different mental states, especially in binary 

classification tasks like motor imagery (e.g., left 

hand vs. right hand). 

Mathematical Basis: 

 
Let E be the EEG signal matrix of size N×T, where: 

 

 N: number of channels (electrodes) 

 

 T: number of time samples 

 
The normalized spatial covariance matrix C is 

calculated as: 

 

𝐶 =
𝐸𝐸𝑇

𝑡𝑟𝑎𝑐𝑒(𝐸𝐸𝑇)
                    (8) 

Where: 

 

𝐸𝑇: transpose of the EEG matrix 

 
𝑡𝑟𝑎𝑐𝑒(𝑋): sum of the diagonal elements of matrix X.  

CSP decomposes the composite covariance matrix 

into eigenvalues and eigenvectors. The spatial filters 

are derived from these eigenvectors. 

 

Let: 

 

C1, C2 = covariance matrices for each class 

 

The composite spatial covariance matrix is: 

 

Cc = C1 + C2                             (9) 

 

Then CSP solves the generalized eigenvalue 

problem: 

 

C1 w = ƛCc w                 (10) 

 

Where: 

 

w: spatial filter, ƛ: eigenvalue 

 

Feature Extraction: 

 

After applying the spatial filters to the EEG data, the 

log-variance of the projected signals is computed and 

used as features: 

 

ƒ𝑖 = log(
𝑣𝑎𝑟(𝑤𝑖

𝑇
𝐸)

𝑣𝑎𝑟(𝑤𝑇𝐸)
)     (11) 

 

Typically, the filters corresponding to the largest 

and smallest eigenvalues are selected, as they offer 

the best class discrimination. CSP is known to be 

sensitive to noise and electrode selection, which is 

why it is often paired with preprocessing and 

electrode selection strategies [18]. 

5- Implementation of the Brain-

Computer Interface Algorithm  

 

In this section, the signal processing algorithm of the 

Brain-Computer Interface is implemented using a 

combination of preprocessing techniques, feature 

extraction (CSP), and classification algorithms 

(KNN, LDA, and SVM) [8], [10]. All signal data 

were filtered within the frequency band of 8 to 25 Hz, 

and features were extracted using Common Spatial 

Pattern (CSP) [7], [17]. 

Classification was done using 10-fold cross-

validation, and the performance was evaluated based 
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on classification accuracy and execution time for 

each classifier and preprocessing configuration. 

 

5-1 Classification with CSP Only (No 

Preprocessing) 

 

Table 1. Accuracy of Classifiers Using Only CSP 

 KNN LDA SVM 

Person A 59.5% 50% 54% 

Person B 72.5% 72% 72.5% 

Person C 72.5% 71.5% 71.5% 

Person D 62.5% 67% 65% 

Person E 91% 93% 93% 

Person F 57% 61.5% 61.5% 

Person G 72.5% 70.5% 72.5% 

AVERAGE 69.6429% 69.3571% 70% 

Execution time 

(seconds) 

22.8966 23.1730 22.1140 

 

 

Fig. 2. Comparison of the Accuracy of Classifiers 

 

 

 

 

 

5.2 Classification with CSP + CAR 

The Common Average Reference (CAR) method was 

used for artifact reduction before applying CSP. 

Although CAR slightly changed the spatial 

characteristics of the signals, it did not significantly 

improve the classification accuracy. 

 Slight improvement in subject A, D.  

 Accuracy differences were not statistically 

significant. 

 Execution time increased to around 25–30 

seconds for each classifier 
 

Table 2. Implementation with Common Spatial Pattern and 
Common Average Reference 

 KNN LDA SVM 

Person A 59% 50.5% 53% 

Person B 70% 72.5% 72.5% 

Person C 71.5% 71.5% 70.5% 

Person D 66% 67% 67.5% 

Person E 91% 92.5% 93% 

Person F 59.5% 60.5% 61.5% 

Person G 71.5% 72% 73.5% 

AVERAGE 69.7857% 69.2143% 70.2143% 

Execution time 

(seconds) 

25.3959 25.7285 25.3441 

 

5.3 Classification with CSP + Laplace 

Reference 

The Laplace reference method, which uses weighted 

averages of neighboring electrodes based on distance, 

was applied before CSP. While it enhanced the local 

spatial resolution, its impact on classification 

accuracy was again limited.  

 No significant gains in accuracy across 

subjects. 

 

 Execution time increased considerably to 

about 36 seconds per classifier due to the 

computational cost of Laplace filtering. 
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Table 3. Implementation with common spatial pattern and Laplace 

reference 

 KNN LDA SVM 

Person A 56.5% 50.5% 54.5% 

Person B 70.5% 72.5% 72.5% 

Person C 70.5% 70.5% 70.5% 

Person D 64% 66% 66.5% 

Person E 58.5% 92.5% 93% 

Person F 58.5% 60.5% 61% 

Person G 70.5% 72% 73.5% 

AVERAGE 68.7857% 69.2143% 70.2143% 

Execution time 

(seconds) 

36.5281 36.4391 36.3699 

 

5.4 Classification with CSP + ICA 

Independent Component Analysis (ICA) was 

applied before CSP to remove artifacts like eye and 

muscle movement signals. 

Table 4. Implementation with Common Spatial Pattern and 

Analysis of Independent Components  

 KNN LDA SVM 

Person A 54.5% 54% 57.5% 

Person B 73% 73% 73% 

Person C 69.5% 70% 68.5% 

Person D 72% 77.5% 75.5% 

Person E 92.5% 93% 92% 

Person F 56.5% 62% 62% 

Person G 75.5% 75% 76% 

AVERAGE 70.5% 72.0714% 72.0714% 

Execution time 

(seconds) 

103.5669 105.7759 105.7309 

 

Fig. 3. Comparison of Accuracy of Classifiers Chart in Algorithm 
(5-4) 

Despite the high computational cost, ICA yielded the 

best classification accuracy, especially when 

combined with SVM. 

6. Electrode Selection Algorithm 

According to Fig. 4, the parts of the brain that are 

activated by imagining the movement of the left and 

right hands are identified, and in places where the 

intensity of the color is higher, we see more brain 

activity. The motor perception cortex is located in the 

central part and towards the ears. In the desired data 

set, we must choose the electrodes that are located in 

the central part and the motor perception cortex.  

 

 

Fig. 4. The Activated Part of the Brain in Imagining Left and Right 
Hand Movements 
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To improve classification performance and reduce 

computation time, a two-stage electrode selection 

method was employed. 

6.1  Selected Channels (Stage 1) 

 

The initial selection of 25 electrodes was based on 

their anatomical relevance to motor imagery. These 

include:  

 

      Fig. 5. Placement of Electrodes in the First Step  

 

 

Table 5. The Accuracy of the Classifiers in the First Stage of the 
Channel Selection Algorithm 

 KNN LDA SVM 

Person A 60.5% 55.5% 58.5% 

Person B 76% 77% 77% 

Person C 69% 75% 75% 

Person D 50% 52.5% 51.5% 

Person E 83% 86.5% 78.5% 

Person F 77% 77.5% 81% 

Person G 76% 76% 77.5% 

AVERAGE 70.2143% 71.4286% 72.5714% 

Execution time 

(seconds) 

11.6561 11.6843 11.6369 

 

6.2 Classification Results (19 Channels) 

After performance-based refinement, the number of 

channels was reduced to 19.  

 

         Fig. 6. Placement of Electrodes in the Second Step 

 

The use of fewer electrodes led to significant 

improvements in execution time compared to using 

all channels with ICA. 

 

Table 6. The Accuracy of the Classifiers in the Second Stage of the 

Channel Selection Algorithm 

 KNN LDA SVM 

Person A 82.5% 66.5% 82% 

Person B 70% 76% 76.5% 

Person C 58.5% 63.5% 63.5% 

Person D 58% 52.5% 52.5% 

Person E 79.5% 79.5% 78.5% 

Person F 78% 82% 81.5% 

Person G 90% 87.5% 90% 

AVERAGE 73.7857% 72.5% 74.7857% 

Execution time 

(seconds) 

11.2516 9.8891 9.5692 

 

The two-stage channel selection process significantly 

improved both accuracy and processing speed. 
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The best performance was achieved using SVM with 

19 selected electrodes, confirming that smart feature 

reduction is essential in practical BCI systems. 

 

7. Electrode Selection Based on 

Histogram Analysis 

7.1 Histogram Comparison of Channels 

 

In this section, a more advanced method for electrode 

selection is presented, which uses not only the spatial 

location of electrodes but also a statistical analysis of 

their activity based on histogram charts. 

The goal is to identify the most active and 

informative channels by examining the distribution 

and strength of signals recorded during motor 

imagery. 

For better interpretation and comparison of channel 

activity, histogram diagrams were generated for each 

selected channel. 

The distribution of signal power and variance in each 

channel was analyzed to determine which ones 

contributed the most meaningful data to the 

classification process. As a case study, the following 

channels were compared: 

 

Channel 1 (from the initial selection) 

 

Channel 38 (not originally included in the selected 

channels) 

 

Fig. 7. Histogram Chart of Trial 5, Channel 1 

 

 

Fig. 8. Histogram Chart of Trial 5, Channel 38 

Observations: 

Channel 1 had low activity and minimal variance, 

indicating weak signal strength and poor 

discriminative potential. 

Channel 38, in contrast, showed significant activity 

and high variance in response to motor imagery tasks. 

This finding suggests that electrode selection should 

not be based solely on anatomical location, but also 

take into account actual signal quality and statistical 

contribution. 

Updated Electrode Set Based on Histogram 

Analysis 

 
Using the histogram results, the selected electrode set 

was updated to include channels with higher activity 

and to eliminate weak or redundant ones. 

This updated set was then tested again with all three 

classifiers: KNN, LDA, and SVM. 
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Classification Results with Histogram-Based 

Selection 

 
The classification results improved across all three 

algorithms after the histogram-informed channel 

refinement. 

 

The SVM classifier once again achieved the highest 

accuracy, improving from 74.8% to 79.2%, 

demonstrating the effectiveness of this enhanced 

selection method. 

 
 

 

      Fig. 9. Placement of Electrodes in Channel Selection                 
      Algorithm with Histogram Diagram 

 

      Table 7.  Accuracy of classifiers in channel selection with         
       Histogram Diagram 

 

 KNN LDA SVM 

Person A 78.5% 63.5% 80% 

Person B 73.5% 71.5% 73.5% 

Person C 70.5% 72% 72.5% 

Person D 68% 70.5% 72% 

Person E 84.5% 85.5% 85.5% 

Person F 77.5% 83% 82% 

Person G 88% 85% 89% 

AVERAGE 77.2143% 75.8571% 79.2143% 

Execution 

time 

(seconds) 

6.5527 7.9322 7.4710 

 

 

Despite the improved performance, the reduced 

number of optimized channels maintained a fast 

classification speed. 

 

Execution time for all classifiers remained under 7.5 

seconds, making this approach suitable for real-time 

BCI applications. 

 

 

Fig. 10. Comparison of the Accuracy of Classifiers in the Channel 

Selection Algorithm with Histogram Chart 

 

 

The histogram-based channel selection method, by 

incorporating statistical signal strength in addition to 

spatial electrode position, resulted in better 

classification accuracy without increasing 

computational time. 

This demonstrates the power of data-driven channel 

selection in improving the performance of EEG-

based Brain-Computer Interface systems. 

7.2 Total Data Acquisition Time 

 

In order to better compare the introduced methods, 

first, the data related to the total data collection time 

was classified, with the difference that all the data 

was used, and the data related to the time when the 

screen was blank was not removed, nor was the data 

filtered. 
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Table 8. Accuracy of the Classifications Related to the Total Data 

Collection Time 

 KNN LDA SVM 

Person A 44.5% 50.5% 45% 

Person B 52.5% 58.5% 57% 

Person C 50% 46% 44% 

Person D 50.5% 52% 51% 

Person E 50 % 48.5% 48.5% 

Person F 48% 49% 53.5% 

Person G 52.5% 47.5% 45.5% 

AVERAGE 49.7143% 50.2875% 49.2143% 

Execution time 

(seconds) 

31.8999 32.4852 30.4857 

       

As can be seen in the above table, the average 

accuracy of all the classifiers and also the accuracy of 

the classifiers for all persons is around 50%. Due to 

the two classes of the data set used in this research, 

the probability of occurrence of each class is 50% or 

equal to 0.5, so if you do not remove additional data 

and also avoid filtering them, an accuracy of about 

50% will be achieved, which In this way, it can be 

said that the classifiers did the classification 

unconsciously and by chance. 

 

Fig. 11. Comparing the accuracy of the classifiers in the final 

algorithms 

 

 

8- Conclusion 

This study presented a comprehensive approach to 

designing and optimizing a Brain-Computer Interface 

(BCI) system by focusing on signal processing 

methods, particularly preprocessing, feature 

extraction, and classification. Key contributions of 

this research include: 

 Evaluation of various preprocessing 

techniques such as CAR, Laplace, and ICA, 

with results showing that ICA effectively 

reduced noise and improved classification 

performance. 

 Use of the Common Spatial Pattern (CSP) 

method for feature extraction, which 

enhanced class separation and feature 

discrimination. 

 Comparison of three classifiers (KNN, 

LDA, SVM), with SVM consistently 

achieving the highest accuracy across all test 

scenarios. 

 Development of a two-stage electrode 

selection strategy, starting with 25 

anatomically relevant channels and refining 

down to 19 based on performance. 

 Introduction of a histogram-based channel 

selection method, which further improved 

classification accuracy and demonstrated the 

importance of statistical signal quality in 

channel selection. 

The highest classification accuracy (79.2%) was 

achieved using SVM combined with histogram-based 

channel selection, and execution time was reduced to 

under 7.5 seconds, confirming the method's 

suitability for real-time BCI applications. 

In conclusion, combining CSP with proper 

preprocessing and intelligent channel selection 

significantly boosts BCI performance. This 

framework offers a scalable and efficient path toward 

building accurate, low-latency brain-computer 

interfaces. The excessive number of them causes 

redundancy and increases the execution time. It is 

clear that the channel selection algorithm has the best 
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accuracy, and also the execution time of this 

algorithm is much less. 
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