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ABSTRACT. With the widespread use of the internet and the development of wireless networks that 

transfer large data streams, the importance of assessing and controlling the quality of communication 

links in wireless networks has gained significant attention. By predicting link quality, energy 

consumption of network nodes and the overall stability of the network can be improved. One category of 

methods used for predicting the quality of wireless links is machine learning techniques. This paper 

examines the performance of ensemble methods, a type of supervised machine learning approach that has 

previously received less focus in the context of wireless link quality prediction. Additionally, due to the 

advantages of unsupervised methods that can be trained on unlabelled datasets, the performance of the k-

means algorithm is also evaluated. The results show that ensemble algorithms are highly effective in 

predicting the quality of communication links in wireless networks. Among the ensemble methods, 

Gradient Boosting achieved the best performance with an F1 score of 95.79, while the k-means method 

demonstrated superior performance in the recall metric, achieving a value of 96.47 compared to other 

methods. 
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1 INTRODUCTION 

Wireless networks constitute a fundamental pillar of modern communications. By eliminating the 

need for wired infrastructure, they enable data connection and exchange in dynamic, mobile, and 

distributed environments. These networks find application in diverse forms, including Wireless Sensor 

Networks, Vehicular Ad-hoc Networks, and Cloud-Edge systems. Their use extends to fields such as 

environmental monitoring, smart healthcare, transportation, and the Internet of Things. 

In wireless networks, radio signal propagation channel conditions can vary significantly over time 

and location, impacting radio link quality. Given that some links inherently possess lower quality, data 

retransmission can partially maintain data integrity when packets traverse poor-quality links. However, 

this approach reduces transmission efficiency, increases energy consumption, and introduces delays 

detrimental to real-time applications [1]. Conversely, employing accurate LQE can prevent packet loss 

and enhance Quality of Service (QoS) [2]. Consequently, utilizing LQE methods is essential to identify 

and select optimal paths for reliable data delivery. 

Machine learning (ML) methods represent a distinct category of approaches for LQE. Leveraging 

ML for LQE offers substantial improvements in wireless network performance, as these techniques excel 

at processing large volumes of data traces, learning from them, and developing a comprehensive, high-

level understanding of wireless link characteristics [3]. ML-based LQE methods can be implemented 

through two primary approaches: continuous numerical value prediction (regression) or discrete value 

prediction (classification). 
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Recent years have witnessed substantial research in the field of LQE for wireless networks. 

Extensive ML approaches have been developed for LQE in wireless networks. Within supervised learning 

approaches, a hybrid method integrating Support Vector Machines (SVM) with decision trees has been 

developed to estimate wireless link quality [1]. This technique analyses key features—Received Signal 

Strength Indicator (RSSI) and Link Quality Indicator (LQI)—to perform five class quality predictions 

based on Packet Reception Rate (PRR) metrics. The study demonstrates that this ML implementation 

significantly reduces network energy consumption while extending overall network lifetime. 

Another supervised learning approach introduces a comprehensive framework for developing 

wireless link quality classifiers [4]. This methodology highlights how design decisions—across data pre-

processing, feature engineering, and learning algorithm selection—critically impact ML-based LQE. The 

study demonstrates that resampling to balance training classes and generating synthetic features 

substantially enhances both overall classification accuracy and minority class detection. Implemented 

using the Rutgers dataset [5], the framework employs a decision tree classifier with optimal feature 

combination selection to predict three level link quality (bad, medium, good) from RSSI values. It further 

evaluates random forest performance within ensemble methods. 

Separately, a distinct random forest-based technique also leverages the Rutgers dataset for LQE [6], 

but implements alternative classification thresholds for its three quality tiers. This approach formulates 

hyperparameter tuning as a search optimization problem, resolved through an enhanced sparrow search 

algorithm. 

A distinct approach implements a six-layer CART decision tree (employing Gini impurity) for link 

quality classification in wireless sensor networks [7]. Utilizing the Rutgers benchmark dataset, this 

method incorporates resampling to balance training classes and generates synthetic features through RSSI 

value summation and multiplication. The research further demonstrates that tree depth critically impacts 

model efficacy, with six layers yielding optimal performance. 

Contrastingly, a separate supervised learning technique also leverages the Rutgers dataset for 

evaluation [8] but introduces a novel four class classification model (very bad, bad, medium, good) 

diverging from conventional three class model. Implemented via gradient boosting for IoT device link 

quality assessment, this method similarly enhances performance through synthetic feature creation and 

resampling techniques. 

Addressing the scarcity of unsupervised approaches for LQE in software-defined wireless mesh 

networks, a novel framework enables real-time anomaly detection [9]. This methodology employs an 

enhanced clustering algorithm leveraging elastic similarity metrics to effectively characterize wireless 

link reliability. Further, it introduces a specialized change point detector that minimizes overestimation 

errors through a dual-mechanism approach: a rank-based statistical test coupled with a recursive 

maximization procedure. When triggered by a potential anomaly, this recursive mechanism identifies 

peak fluctuation positions – serving as heuristic indicators of true change point locations. 

Alternatively, several approaches leverage unsupervised clustering to generate annotated datasets 

for training LQE models. Specifically, In [10], They employs hierarchical clustering for data labelling, 

subsequently applies resampling to augment minority class representation, and ultimately trains a 

LightGBM (Light Gradient Boosting Machine) classifier. 

Current literature analysis reveals that ensemble techniques remain underutilized for LQE 

compared to other supervised learning approaches. Moreover, comparative studies confirm supervised 

methods' predominant adoption, despite their inherent dependency on labelled datasets – a requirement 

that poses significant data acquisition challenges. This limitation consequently positions unsupervised 

learning methods as a viable alternative for LQE applications. 

This paper examines the efficacy of ML methods in classifying the quality levels of links within 

wireless networks. Specifically, the contributions encompass: 

 Implementation of ensemble methods for classifying wireless link quality levels. 

 Application of unsupervised learning techniques for clustering wireless links by quality class. 

 Utilization of Principal Component Analysis (PCA) to enhance the performance of the 

unsupervised method employed. 
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2 FINDINGS 

The proposed methodology investigates two distinct ML categories for predicting wireless link 

quality classes: ensemble techniques and unsupervised approaches. Feature extraction from data traces 

constitutes the essential pre-processing step for training these models. Specifically, features derived from 

RSSI measurements—stored by radio receivers—are utilized in this framework, with comprehensive 

details provided in Table 1. 

 

Table 1: Features derived from RSSI measurements for training machine learning models. 

Extracted Features Instantaneous Received Signal Strength 

𝑟𝑠𝑠𝑖 ،𝑟𝑠𝑠𝑖2 ،𝑟𝑠𝑠𝑖3 ،𝑟𝑠𝑠𝑖4 ،𝑟𝑠𝑠𝑖−1 ،𝑟𝑠𝑠𝑖−2 ،𝑟𝑠𝑠𝑖−3 ،𝑟𝑠𝑠𝑖−4 Mean RSSI 

𝑟𝑠𝑠𝑖𝑎𝑣𝑔 ،𝑟𝑠𝑠𝑖𝑎𝑣𝑔
2  ،𝑟𝑠𝑠𝑖𝑎𝑣𝑔

3  ،𝑟𝑠𝑠𝑖𝑎𝑣𝑔
4  ،𝑟𝑠𝑠𝑖𝑎𝑣𝑔

−1  ،𝑟𝑠𝑠𝑖𝑎𝑣𝑔
−2  ،

𝑟𝑠𝑠𝑖𝑎𝑣𝑔
−3  ،𝑟𝑠𝑠𝑖𝑎𝑣𝑔

−4  

Variance and Derivative of RSSI 

𝑟𝑠𝑠𝑖𝑑𝑟, 𝑟𝑠𝑠𝑖𝑠𝑡𝑑 Instantaneous RSSI 

 

Computation of key features—mean RSSI, RSSI variance, and RSSI slope—necessitates multiple 

signal strength measurements within a sliding observation window (𝑊ℎ𝑖𝑠𝑡𝑜𝑟𝑦). Consistent with our 

objective of wireless link quality classification, target categories must be assigned to all dataset links. 

Following established methodologies [4, 7], the proposed framework implements three class classification 

(bad/medium/good) using PRR metrics derived from Equation (1). 

(1) 
𝑦 = {

𝑏𝑎𝑑, ∀ 𝑃𝑅𝑅 ≤ 0.1
𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒, ∀ 𝑒𝑙𝑠𝑒

𝑔𝑜𝑜𝑑, ∀ 𝑃𝑅𝑅 ≥ 0.9
 

Equation (1) defines PRR as the ratio of successful message receptions within transmission range 

to total potential receivers in that range. This metric is calculated within a dedicated observation window 

(𝑊𝑃𝑅𝑅). 

The proposed methodology employs three ensemble techniques—Bagging, Gradient Boosting, and 

AdaBoost—to predict link quality using extracted features. Concurrently, k-means clustering serves as the 

unsupervised approach for LQE assessment. Prior to clustering, all Table 1 features undergo PCA for 

dimensionality reduction and feature space optimization. The transformed PCA output subsequently trains 

the k-means model. 

Missing values are replaced with zero, indicating that no packet was received. Following this 

replacement, the specified features are extracted from the trace dataset using two windows, 𝑊ℎ𝑖𝑠𝑡𝑜𝑟𝑦 and 

𝑊𝑃𝑅𝑅, each of size 10. These features are then normalized using the standard normalization method. 

The constructed dataset trains both the ML methods introduced in the proposed approach and 

baseline methods, enabling performance comparison. Crucially, not all features are fed directly into the 

ML models; instead, optimal features are selected. The three selected features are 𝑟𝑠𝑠𝑖, 𝑟𝑠𝑠𝑖𝑎𝑣𝑔, and 

𝑟𝑠𝑠𝑖𝑠𝑡𝑑, identified through exhaustive evaluation of all feature combinations [12]. 

This dataset is then used to train and compare the proposed and baseline methods Table 2. All 

results are reported using 3-fold cross-validation and evaluated across three metrics: accuracy, recall, and 

F1-score. Weighted averaging is applied during the calculation of both accuracy and recall. 

 

Table 2: Experimental results comparing the performance of the proposed method's 

variants against baseline approaches when trained on the dataset. 

F1-Score Recall Precision Features ML Approach  

91.91 88.69 97.00 All Decision Tree [12] 

90.20 95.50 85.50 Selected CART Decision Tree [17] 

92.20 92.20 92.30 Selected Based on Logistic Regression [13] 
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93.20 93.20 93.20 Selected Based on Decision Tree [13] 

94.64 93.52 96.82 Selected Random Forest 

95.64 94.92 97.04 Selected Decision Tree [12] 

93.88 92.64 96.10 Selected AdaBoost 

95.52 94.74 97.02 Selected Bagging 

95.79 95.15 97.10 Selected Gradient Boosting 

73.24 66.31 85.84 Selected K-means 

76.06 74.56 85.28 Selected + PCA K-means 

94.91 96.91 95.03 All + PCA K-means 

 

Gradient boosting yielded the highest performance in both accuracy 97.10% and F1-score 95.79% 

metrics. High accuracy indicates the proportion of links correctly classified as having a target quality 

level. For recall, K-means combined with PCA achieved the top result 96.47%, reflecting its effectiveness 

in identifying all links possessing the target quality. The F1-score represents the harmonic mean of 

precision and recall. Notably, as unsupervised methods are not conventionally assessed using 

classification metrics, these measures were employed exclusively for comparative performance analysis 

against supervised approaches. 

3 CONCLUSION 

Recent advancements in high-throughput wireless networks have heightened the importance of 

measuring and controlling wireless link quality. Accurate link quality prediction enhances network 

stability and energy efficiency. ML offers state-of-the-art solutions for this task. This study investigated 

ensemble methods – previously underexplored for link quality prediction – demonstrating their strong 

predictive capability. Among ensemble techniques, gradient boosting achieved the highest F1-score 

95.79%. We also evaluated unsupervised approaches (eliminating the need for labelled data), finding that 

K-means with PCA attained the best recall 96.47%, outperforming other methods in this metric. 
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