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Abstract - The COVID-19 pandemic has underscored the 

critical challenges faced by healthcare systems  

worldwide, particularly in meeting the escalating demand 

for resources such as ICU beds, specialized care, and 

medical equipment. This shortfall has resulted in 

significant loss of life, highlighting the urgent need for 

accurate and timely diagnosis to optimize patient 

outcomes and reduce healthcare costs. In response to 

these challenges, our research focuses on developing a 

machine learning system capable of  predicting whether 

patients will require ICU admission or can be managed 

remotely at home during peak periods of demand. 

Leveraging a novel two-dimensional reduction approach 

that combines evolutionary algorithms, Pattern 

Discovery, and machine learning techniques, we aim to 

streamline patient-collected data to train predictive 

models capable of forecasting ICU needs and remote care 

requirements. By providing healthcare systems with the 

ability to anticipate patient needs during critical phases 

of the pandemic, our predictive model empowers 

healthcare providers to allocate resources more 

effectively, optimize patient care delivery, and mitigate 

the impact of healthcare crises. The results of our 

experimental evaluation demonstrate the promising 

potential of our approach in addressing the pressing 

challenges posed by the COVID-19 pandemic and similar 

public health emergencies. 

 

Index Terms - Pattern Discovery, Machine Learning, 

Developmental Algorithms, Feature Selection, Sample 

Selection. 

INTRODUCTION 

The World Health Organization (WHO) classified 

SARSCoV-2 (Covid-19) as an epidemic on March 11. 

However, healthcare systems faced shortages and 

deficiencies in responding to patients’ needs for ICU beds, 

specialists, and personal protective equipment. The 

increasing demand for ICU beds created a curve surpassing 

the growing capacity of hospitals. Flattening the curves 

during each peak of the epidemic involves classifying 

patients into those who can recover remotely through home 

care and those requiring intensive care in hospitals with 

specialized equipment and personnel. Given the critical 

nature of patient classification, reducing ineffective 

features could be a solution to increase classification 

efficiency and accuracy. Attempting to place patients 

within the normal range of characteristics corresponding to 

their health status helps avoid the inclination of features 

towards the special care class, ultimately preserving 

patients’ lives. Considering the impact factor of each 

selected characteristic aids doctors in decision-making. 

Implementing the PCA algorithm in the objective function 

has proven effective in our experiments, although the 

challenge lies in optimizing its input parameter value. This 

value must be less than the number of selected features. If 



 

 

optimization algorithms simultaneously produce these two 

values and fixing a constant value for the component in the 

PCA algorithm restricts the optimization algorithm from 

reducing the selected features to less than this value. 

 

FIGURE 1.  ADDRESSING DATASET CHALLENGES WITH FSIS 

ALGORITHM: A PROPOSED SOLUTION. 

 In Figure 2, two main challenges in data reduction are 

observed: feature abundance and imbalance in the target 

class among samples. Feature abundance is reduced 

through feature selection, while class imbalance is 

addressed by selecting samples. However, due to the large 

number of samples, it is usually not feasible to select them 

within the ranges determined by the genetic algorithm. In 

the second phase of the Feature Selection and Instance 

Selection (FSIS) method, which focuses  on sample 

selection, the pattern for each feature is established using 

the normal ranges identified by the genetic algorithm. 

Subsequently, noisy data points that fall outside these 

patterns are eliminated from the training dataset. This 

process leads to an increase in the model’s accuracy.  

The first challenge, feature abundance, refers to having 

a large number of features in the dataset. This issue has 

been addressed by utilizing feature selection through the 

best evolutionary cover algorithm. Here, four evolutionary 

cover algorithms have been introduced, and their results 

have been compared, suggesting an algorithm with the 

minimum number of features and the highest performance 

as a recommendation. In the evolutionary cover algorithm, 

the PCA algorithm has also been used for dimensionality 

reduction and facilitating classification. The PCA 

algorithm is widely recognized as an effective method for 

dimensionality reduction and facilitating classification. 

However, if a constant value for the PCA component 

parameter exceeds the number of selected features, the 

PCA algorithm encounters difficulties. In other words, we 

have constrained the genetic algorithm to select a subset of 

features larger than this value. The use of evolutionary 

algorithms for feature selection, classification parameter 

optimization, and PCA has been implemented. It is 

essential for the parameter value in the PCA algorithm to 

be smaller than the number of selected features. This issue 

has been resolved by assigning the smallest number from 

the PCA parameter and the selected feature count, 

addressing the simultaneous generation problem of these 

two values.  

The second challenge involves class imbalance in the 

target class, which reduces performance. To address this 

issue, sample selection (undersampling) has been 

considered. However, since the number of samples is 

usually much greater than the number of features, selecting 

samples similar to feature selection imposes a significant 

computational burden on the evolutionary algorithm, 

which inherently is time-consuming. The proposed 

approach in this study is as follows: The evolutionary 

algorithm selects the best value range for each feature with 

the target class as zero. This range is the normal range or 

pattern, and the accuracy of the classifier is the criterion for 

selecting this pattern. Samples within the normal range 

with the class labeled as zero are placed in the zero set, and 

samples outside the normal range with the class labeled as 

one are placed in the one set to remove noisy samples. This 

process is performed for all features, and sets are filled, but 

only one instance of each duplicate sample is considered. 

Finally, these two sets are balanced through 

undersampling. By combining these two sets, a training 

dataset is created. Then, the classifier is trained on the 

training data, and the prediction result of the classifier is 

determined as the value of the objective function. 

Preserving values within the normal range in some 

features, especially important cases in specific industries 

and professions, ensures the preservation of the target 

class.  

TABLE 1. CLARIFYING KEY TERMINOLOGY USED IN OUR 

STUDY. 

Words Definition 

Dateset 1 

COVID-19 - Clinical Data to assess 

diagnosis [1] 

Dateset 2 
Diagnosis of COVID-19 and its clinical 

spectrum [2] 

Dataset 3 
200+ Financial Indicators of US stocks 

(2014-2015) [3] 

Dataset 4 
frican Country Recession Dataset (2000 

to 2017) [4] 

RBF Is a parameter in SVM 

C Is a parameter in SVM 

γ Is a parameter in SVM 

Components Is a parameter in PCA 

AUC Is a metric 

 

 



 

 

In Table 1, we elaborate on and describe the signs and 

abbreviations used in this article. This includes dataset 

names, input parameters of algorithms, and symbols 

employed in formulas.  

 

FIGURE 2.  : IDEAL NORMAL RANGE DEFINITION IN BLOOD 

SUGAR TEST. 

Our dataset encompasses data gathered from blood 

tests,  patients’ medical histories, and past medical records. 

Our goal is to train the system to identify, much like a blood 

test’s normal range, which characteristics classify patients 

as healthy. For instance, elevated or decreased blood 

pressure might indicate potential risks. We aim to 

understand how these characteristics contribute to 

classifying patients into the intensive care unit (ICU) 

category. In Figure 2, when we arrange the data by blood 

sugar values, the zero-class values cluster together, 

forming a normal range between 70 and 110. Blood sugar 

values associated with class one are excluded, defining the 

normal range. Our criterion for each feature in the training 

data is for values with class zero to fall within the normal 

range, while values with class one fall outside this range. 

Subsequently, we have adjusted the training data based on 

this criterion, resulting in improved accuracy in evaluating 

the test data. 

Objectives and achievements in this article: 

 Flattening the curve in pandemics 

 Identification of influential features in ICU 

admissions confirmed for COVID-19 

 Selection of samples with normal range 

features (blood tests, etc.) 

 Determination of the direction of features 

(blood tests, etc.) in their impact on 

transitioning to the high-risk class 

 Ranking of features obtained from 

evolutionary cover algorithms 

The remainder of the paper is structured as follows: 

Section II provides an overview of related studies. Section 

IV details the utilized dataset, followed by the problem 

formulation in Section V. The proposed approach is 

elucidated in Section VI. Experimental evaluation and 

results are presented in Section VII, followed by a 

discussion and summary of the work in Section VIII. 

Future work is outlined in Section IX. 

 

 

RELATED WORK 

In this study, evolutionary algorithms have been 

extensively used for both feature selection and pattern 

recognition. Reference articles [5], [6], [7] 

comprehensively explain the necessity and advantages of 

using these algorithms in solving complex problems. In the 

feature selection process, this study has focused on 

optimizing the number of features and increasing model 

accuracy, integrating these two objectives into a unified 

fitness function for optimization. Additionally, some 

articles, such as [8], define multi-objective evolutionary 

algorithms as algorithms capable of managing multiple 

fitness functions simultaneously. This approach enables 

the achievement of more optimal solutions. For example, 

in article [9], the similarity between features, calculated 

through a correlation matrix, has been considered as an 

additional objective alongside optimizing the number of 

features and increasing accuracy. This reduces redundancy 

among features and improves model performance. 

Furthermore, in article [10], optimizing the number of 

dataset samples and increasing the minority class count 

have been introduced as complementary objectives 

alongside the two main goals. These approaches 

demonstrate that the use of multi-objective evolutionary 

algorithms can simultaneously improve multiple aspects of 

the problem. In this study, four different methods for 

feature selection have been used, and the identified features 

have been improved. These methods were then compared, 

and the best one was employed for pattern recognition. In 

the following, a critical evaluation of these four feature 

selection techniques is provided.  

I.  GA-PCA 

In the study by Behar et al. [11], the GA-PCA-DT 

algorithm is employed for breast cancer detection. The 

images are first preprocessed and filtered before being 

converted into feature sets. These features are then selected 

using the GA-DT algorithm, and subsequently reduced to 

12 components through PCA. Notably, unlike our 

approach, PCA is not involved in feature selection but is 

instead applied afterward to reduce the feature set to 12 

components as determined by PCA. Similarly, in Yang et 

al. [12], an intelligent variation extraction method is 

proposed, integrating the optimization algorithm GA into 

PCA, resulting in the GA-PCA technique. The outcomes of 

GA-PCA are compared with standard PCA, and the 

findings demonstrate a more significant impact of the GA 

optimization, highlighting improved results.  

II.  GA-SVM 

Regarding the integration of GA and SVM approaches, 

Zhang et al. [13] conducted a study that employed a 

combination of multiple algorithms for the precise 



 

 

identificat of corn types. This approach involved noise 

reduction techniques such as the Savitzky-Golay (SG) 

filter and Multiple Scattering Correction (MSC), alongside 

optimization algorithms like Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO). Additional 

techniques, including Successive Projection Algorithms 

(SPA) and Competitive Adaptive Reweighted Sampling 

(CARS), were also utilized. By exploring and comparing 

various configurations of these algorithms, the study 

identified an optimal combination named MSC-(CARS-

SPA)-GA-SVM. Similarly, another study [14] analyzed 10 

UCI datasets, demonstrating notable improvements across 

all datasets. In the case of SVM with an RBF kernel, the 

performance is highly sensitive to the tuning of parameters 

c and γ. The ISMA algorithm was applied here to 

simultaneously reduce the feature set and optimize the 

SVM parameters, leading to enhanced results.  

III.  PSO-SVM 

In the literature, an intriguing study is presented in [15], 

where the focus was on improving the accuracy of 

detecting changes in multi-temporal images. The method 

was evaluated across six datasets using various approaches, 

with the PSO-SVM method consistently outperforming 

others. Parameters C1 and C2, which represent the change 

coefficients for the global best particle and the best particle 

at each stage, were optimized through trial and error on 

three datasets. Both parameters, set to 2, produced optimal 

results across all datasets. Similarly, the study in [16] 

utilized 12 datasets from the UCI repository, yielding 

favorable outcomes. The feature reduction process was 

conducted in two stages to obtain a more relevant and 

informative subset of features. Initially, the REF feature 

selection method was used, followed by the application of 

a combination of SVM and DWPSO (a dynamically 

weighted PSO optimization algorithm) in the second stage. 

This method not only enhanced accuracy but also reduced 

execution time, as PSO tends to slow down with larger 

feature sets. The first stage feature selection played a 

crucial role in accelerating the process.  

IV.  PSO-PCA 

The PSO-PCA algorithm was utilized in [17] to improve 

the accuracy of leukemia detection. Leukemia is 

characterized by an abnormal increase in immature 

lymphocytes in the blood and bone marrow, which can be 

classified using imaging techniques. In this study, features 

were extracted from images using a convolutional neural 

network (CNN). However, unrelated features can reduce 

classification accuracy and increase execution time. By 

integrating the PSO optimization algorithm with PCA, the 

method successfully selected more informative features 

and sped up the classification process. Similarly, Ahmed et 

al. [18] focused on enhancing the accuracy of COVID-19 

detection from lung images. After splitting the data into 

training, testing, and validation sets, a 2D-CNN was used 

to extract features. Due to the large number of irrelevant 

and non-informative features, dimensionality reduction 

techniques such as PSO and PCA were applied. The 

classifiers tested included Linear SVM, k-Nearest 

Neighbor, and Naive Bayes, with SVM achieving the 

highest accuracy among them.  

BACKGROUND  

In this section, we offer explanations for some of the 

algorithms utilized in this paper.  

I.  Optimizer Algorithms 

Optimization algorithms strategically select influential 

features based on the classification algorithm’s optimal 

performance. This selection process improves the speed 

and overall efficiency of the classifier by eliminating 

ineffective data. 

1)  Genetic Algorithm (GA): Genetic algorithms are a 

type of search algorithm, but they have several 

distinguishing characteristics: 

 Genetic algorithms do notdirectly manipulate the raw 

data values of the problem. Instead, they operate on a coded 

representation of the dataset. They explore a population of 

potential solutions encoded in a specific format to 

iteratively search for optimal or near-optimal solutions to 

the problem. This approach allows genetic algorithms to 

efficiently navigate the search space and discover solutions 

that may not be immediately evident when working with 

the raw data values directly. By applying genetic operators 

such as selection, crossover, and mutation to the coded 

representations, genetic algorithms iteratively evolve and 

refine the population toward better solutions. This 

abstraction enables genetic algorithms to address a wide 

range of optimization and search problems across various 

domains. 

  When gradient information is not available, the objective 

function becomes the main tool for optimizing the 

problem. Without gradients, which show the direction of 

the steepest ascent or descent, optimization algorithms 

must rely only on evaluations of the objective function to 

guide their search for optimal solutions. These algorithms 

explore the parameter space by iteratively adjusting the 

input values and evaluating their corresponding objective 

function values to determine the direction that leads to 

improved performance. Although this approach may be 

more computationally intensive compared to gradient-

based optimization methods, it remains effective for 

optimizing objective functions in scenarios where gradient 

information is unavailable or difficult to compute 

Genetic algorithms (GAs) are a type of evolutionary 

algorithm [19], that are suitable for both constrained and 

unconstrained optimization tasks and are used across a 

wide range of domains [20], [21], [22], [23]. Unlike other 

optimization methods [24], [25], GAs operate on a coded 

representation of the problem dataset and search for a 



 

 

population of potential solutions to identify optimal 

answers to the problem. In GA, a population of candidate 

solutions, represented as chromosomes, is continually 

generated. Over multiple generations, individuals from the 

current population are randomly selected as parents using 

GA operators, and these parents are used to produce a new 

population for the subsequent generation. The GA 

operators are outlined as follows: 

 Encoding: The prevalent coding scheme is binary coding, 

wherein each chromosome ci comprises a vector of 

operators represented as binary values of 1 or 0. In this 

encoding, each individual feature 𝑓𝑖 denotes whether it is 

present (𝑓𝑖 = 1) or not (𝑓𝑖 = 0) in that specific chromosome  

𝐶(i=1,...,m)  [26]. 

 Generation/Initialization: The population is initialized 

after encoding. The initial population is created by 

randomly selecting individuals with labels 1 or 0. The first 

label indicates the inclusion of the individual predictor, 

while the second indicates that the predictor was not 

selected [26]. 

 Gene Selection: Various subsets of genes are selected 

from different training sets. The presence of each gene in 

the different selected gene subsets is recorded. The final 

gene subset is chosen from the genes with the lowest 

number of occurrences [27]. 

 Mutation: To preserve diversity from one generation to 

another, mutation occurs where some genes undergo 

mutation with low probability [26]. 

 Crossover: After evaluating fitness and selecting the best 

two chromosomes as parents, a certain portion of the genes 

from each parent chromosome is merged to create two 

children 

Table 2 illustrates the terms and their corresponding 

definitions utilized in these experiments and Table 3 shows 

the full definition of the GA terms.  

The structure of genetic algorithms is illustrated in Figure 

3. In modeling the problem, features are translated into a 

gene format represented as a chromosome. In the genetic 

search, there is a cycle with a condition (criterion) that must 

be satisfied. After initialization, the fitness function is 

applied in each round to evaluate the performance of 

chromosomes/population (each solution/answer). The best 

chromosome is selected for the next generation, with 

crossover, mutation, and selection as GA operators as part 

of the process. These steps are repeated until the criterion 

is met; in our experiment, we set the criterion to the 

maximum generation. The best chromosome is then chosen 

as the best solution/response. This text describes the 

structure and operation of genetic algorithms in solving 

problems, detailing each step involved in the process. 

 

FIGURE 3.  : STRUCTURE OF GENETIC ALGORITHMS. 

TABLE 2. DEFINITIONS OF TERMS UTILIZED IN GENETIC 

ALGORITHMS. 

GA Term Definition 

Chromosome The overall solution to the problem 

Gene The smallest unit of a chromosome 

Locus 
The position of a gene on a 

chromosome 

Alleles 
The possible values that a gene can 

take 

Phenotype 
The decoded representation of the 

chromosome 

Genotype 
The encoded representation of the 

chromosome 

TABLE 3. EQUIVALENCE TABLE OF BIOLOGICAL CONCEPTS 

AND GENETIC ALGORITHM ELEMENTS. 

Natural evolution GA 

environment Problem environment to solve 

population A set of alternative answers 

produce Repeat step 

Man Volunteer Answer 

parents Selected answers 

Adaptation size Fit value 

 
 



 

 

2) Binary Particle Swarm Optimization algorithm: The 

binary PSO algorithm draws inspiration from the collective 

movement of animals, particularly birds, who select their 

landing spots based on safety and opportunity. Each bird’s 

decision-making is influenced by its personal experience 

(pBest) and observations of other birds’ movements 

(gBest), akin to social knowledge. In the binary PSO 

algorithm, these birds are represented as particles randomly 

positioned in the problem space. Throughout each 

iteration, particles adjust their positions to find more 

suitable locations based on the objective function, similar 

to genetic algorithms. While genetic algorithms are 

typically applied to continuous problems, we adapt the 

binary PSO algorithm for discrete problems in our context. 

Here, binary values (0 and 1) indicate the presence or 

absence of features. The goal of optimization problems is 

to minimize a variable represented by a vector 𝑷 =
[𝒑𝟏, 𝒑𝟐, 𝒑𝟑, … , 𝒑𝒏], determined by the objective function 

formula, where n denotes the number of problem-specific 

variables. 

𝑃𝑖
𝑡 = [𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3 , … , 𝑝𝑖𝑛]𝑇 

 

(1) 

Equation (1)  represents the position vector, while 

Equation (2) represents the velocity vector for each 

iteration of particle 𝑖. The notation 𝑃𝑖𝑗 represents the vector 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖. 

𝑆𝑖
𝑡 = [𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3, … , 𝑠𝑖𝑛]𝑇 (2) 

Equation (3) demonstrates the effect of the internal 

multiplication of 𝑤 by the velocity vector on the particle’s 

position in the subsequent step. Increasing the value of 𝑤 

reduces the search velocity and consequently the distance 

traveled in the search space. However, this adjustment may 

result in a more precise solution being obtained at the 

subsequent position. 

𝑂𝑏𝑗𝑒𝑐𝑡1𝑖𝑗 = 𝑤𝑆𝑖𝑗
𝑡  (3) 

Equation (4) represents 𝑂𝑏𝑗𝑒𝑐𝑡2, which relies on the 

personal experience and self-perception of the particle. If 

the individual experience differs slightly from the current 

state, it directs the particle towards a new position, with a 

constant coefficient 𝑐1denoting its influence. The 

introduction of a random variable 𝑅𝑎𝑛𝑑𝑜𝑚1prevents the 

parameters from converging prematurely. 

𝑂𝑏𝑗𝑒𝑐𝑡2𝑖𝑗 = 𝑐1𝑅𝑎𝑛𝑑𝑜𝑚1
𝑡 (𝑝𝑖𝑗

𝑙𝐵𝑒𝑠𝑡 − 𝑝𝑖𝑗
𝑡 ) (4) 

Equation (5)  corresponds to the best social experience. It 

involves exchanging individual experiences. If the current 

position of the particle deviates from the best social 

experience, it moves towards a new position influenced by 

a factor of 𝑐2. The presence of a random variable 

𝑅𝑎𝑛𝑑𝑜𝑚2 prevents premature parameter convergence. 

𝑂𝑏𝑗𝑒𝑐𝑡3𝑖𝑗 = 𝑐2𝑅𝑎𝑛𝑑𝑜𝑚2
𝑡 (𝑝𝑗

𝑔𝐵𝑒𝑠𝑡
− 𝑝𝑖𝑗

𝑡 ) (5) 

Equation (6), all three objects affect the speed of the next 

step. 

𝑆𝑖𝑗
𝑡+1 = 𝑂𝑏𝑗𝑒𝑐𝑡1𝑖𝑗 + 𝑂𝑏𝑗𝑒𝑐𝑡2𝑖𝑗 + 𝑂𝑏𝑗𝑒𝑐𝑡3𝑖𝑗 (6) 

𝑃𝑖𝑗
𝑡+1 in Equation (8) represents the next position, which is 

determined by the sigmoid function applied to the speed. 

The sigmoid function, as depicted in Equation (7), 

normalizes the speed values between zero and one. If the 

likelihood is low, the position tends towards one; 

otherwise, it tends towards zero. Then we use Equation (8) 

to discretize Equation (7). 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑆𝑖𝑗
𝑡+1) =

1

1 + 𝑒−𝑆𝑖𝑗
𝑡+1 

(7) 

 

𝑝𝑖𝑗
𝑡+1 = {

1, if rand() ≤ Sigmoid(𝑆𝑖𝑗
𝑡+1)

0, otherwise
 

(8) 

The Binary PSO algorithm is versatile, suitable for a wide 

range of continuous problems, and its binary variant is 

particularly useful for discrete problems. It has 

demonstrated effectiveness in providing high-quality 

solutions across various optimization problems. 

3) Whale Optimization Algorithm (WOA): WOA, a 

novel metaheuristic algorithm introduced by Mirjalili, 

draws inspiration from nature, specifically mimicking the 

hunting behavior of humpback whales. It operates based on 

a hunting strategy that involves bubble-net feeding [28].  

Humpback whales exhibit a preference for hunting 

aggregations of krill or small fish near the water’s surface. 

This behavior is characterized by the formation of 

discernible bubbles arranged in a circular or ”9”-shaped 

path, indicating the presence of prey [28]. 

II.  SVM Algorithm  

Supervised machine learning algorithms like Support 

Vector Machine (SVM) serve as tools for both regression 

and classification tasks. SVM operates as a pattern 

recognition technique rooted in statistical learning theory, 

aiming to minimize structural risk. By ensuring effective 

classification, SVM enhances the generalizability of the 

learning system through the maximization of classification 

margins. A key advantage of SVM lies in its ability to 

mitigate issues like overfitting and the curse of 

dimensionality, thereby circumventing computational 

complexity and local optimization. This feature makes 

SVM particularly valuable for addressing challenges 

associated with limited sample sizes, high-dimensional 

data, and nonlinear relationships [29]. 



 

 

 

III.  PCA Algorithm  

Principal Component Analysis (PCA) is a technique 

commonly used for dimensionality reduction. As the name 

suggests, PCA aims to identify essential components 

within a dataset, allowing us to focus on a subset of features 

that provide the most meaningful information. By 

extracting these crucial features, PCA helps streamline the 

analysis process and allows for a more efficient 

examination of the data. 

DATA REPRESENTATION AND PREPARATION 

In this section, we introduce two datasets related to 

COVID-19 in the medical field and two non-medical 

datasets to evaluate the application of the proposed method 

in other domains: 

I.  COVID-19 - Clinical Data to assess diagnosis:  

 Description: This dataset comprises 

anonymized data obtained from Hospital Sírio-

Libanês in São Paulo and Brasilia. 

 Purpose: The dataset is utilized to assess the 

diagnosis of COVID-19. 

Data has been cleaned and scaled by column according 

to Min Max Scaler to fit between -1 and 1. The orginal 

feature consists of 54 attributes that consist of the 

following groups:  

 Patient demographic information (03) 

 Patient previous grouped diseases (09) 

 Blood results (36) 

 Vital signs (06) 

To which the features extracted by the following 

methods are added: 

 mean 

 median 

 max 

 min 

 diff = max - min 

 relative diff = diff/median  

II.  Diagnosis of COVID-19 and its clinical spectrum:  

 Description: This dataset contains anonymized 

data collected from patients examined at the 

Hospital Israelita Albert Einstein in São Paulo, 

Brazil. 

 Purpose: The dataset is employed to examine 

the diagnosis of COVID-19 and its clinical 

manifestations. 

The datasets comprise samples collected for SARS-

CoV-2 RT-PCR testing and additional laboratory analyses 

carried out during hospital visits.  

Figure 4 illustrates the imbalance present in both 

datasets, highlighting the importance of selecting metrics 

that are robust to class imbalance. These metrics do not 

exhibit bias towards the majority class.  

All data underwent anonymization procedures 

following the best international practices and 

recommendations. Furthermore, standardization was 

applied to all clinical data to ensure a mean of zero and a 

unit standard deviation. 

 

FIGURE 4.   IMBALANCE PERCENTAGE IN DATASET1 AND 

DATASET2 . 

III.  200+ Financial Indicators of US stocks (2014-2015):  

This dataset compiles over 200 financial indicators for 

all stocks listed in the US stock market. The financial 

indicators are obtained from the Financial Modeling Prep 

API and are sourced from the 10-K filings released 

annually by publicly traded companies.  

The last column in the dataset denotes the class of each 

stock, where: 

 If the value of a stock increases during 2015, 

then class=1. 

 If the value of a stock decreases during 2015, 

then class=0. 

In essence, stocks belonging to class 1 are those that one 

should buy at the beginning of 2015 and sell at the end of 

2015. 

IV.  African Country Recession Dataset (2000 to 2017):  

The dataset comprises 49 feature variables and 1 target 

variable (referred to as the ‘growthbucket’ variable). It 

includes a total of 486 samples. Notably, 92.81% of the 

samples are categorized as “0” or “No Recession”, while 

7.82% are classified as “1” or “Recession”. Consequently, 

the dataset exhibits class imbalance. This imbalance offers 

an opportunity to explore techniques for addressing such 

scenarios, such as Cost Sensitive Classification, 

Oversampling, and Undersampling. The dataset spans the 

years from 2000 to 2017 and covers 27 African countries, 

including Morocco, South Africa, Tanzania, Rwanda, 

Eswatini, Togo, Burkina Faso, Angola, Tunisia, Nigeria, 

Kenya, Burundi, Benin, Namibia, Central African 



 

 

Republic, Sudan, Gabon, Niger, Sierra Leone, Lesotho, 

Mauritania, Senegal, Mauritius, Botswana, Cameroon, 

Zimbabwe, and Mozambique.  

The dataset is meticulously curated to address the 

inquiry: ”Which factors wield the greatest influence on, or 

serve as the most significant indicators of, recessions in 

Africa?” 

PROBLEM FORMULATION 

The demand for ICU beds often surpasses the expanding 

capacity of hospitals. By categorizing patients into those 

who can recuperate remotely with home care and those 

who necessitate intensive care in the ICU with specialized 

equipment and expertise, we aim to flatten the curves 

during each peak of the epidemic. Given that our 

classification directly impacts patients’ lives, ensuring the 

accuracy of our classification is of paramount importance. 

Factors that diminish classification accuracy include: 

 The multiplicity of dimensions not only 

reduces accuracy but also increases the 

complexity of classification, leading to higher 

resource consumption and longer execution 

times.  

 Imbalance in the target class negatively 

impacts classification by causing certain 

metrics to lean towards the majority class, 

affecting the overall accuracy of the 

classification. 

PROPOSED APPROACH 

The data we collected includes blood test results, patient 

histories, demographics, and more. Our primary goal is to 

establish a normal range, similar to that of standard blood 

tests. The system should be capable of identifying the 

characteristic range for healthy individuals and selecting 

samples that fall within it. Additionally, it should detect 

potentially dangerous conditions, such as high or low blood 

pressure, that could warrant admission to an intensive care 

unit (ICU). Given that evolutionary algorithms lack 

ranking coverage, this article focuses on assessing the 

importance of each selected feature.  

As part of the data preprocessing, we implemented a 

reduction step. Initially, we performed feature selection, 

followed by filtering samples based on the identified 

normal range. As illustrated in Figure 5, the first phase 

involved selecting features, which is explained in the 

opening section of this chapter. The second phase involved 

filtering samples according to the normal range. In the final 

phase, we provide a detailed description and analysis of the 

selected features.  

I.  Phase1: Feature Selection and parameter optimization 

In feature selection, the GA-PCA method yielded the  

 

FIGURE 5.   THE CONCEPTUAL VIEW OF THE PROPOSED 

APPROACH IS ILLUSTRATED IN THREE DISTINCT PHASES. 

WE COMPARED THE FOUR METHODS SEPARATELY TO 

ENSURE PRECISE FEATURE SELECTION IN THE SUBSEQUENT 

PHASES, WHICH LEADS TO IMPROVED OVERALL RESULTS. 

BASED ON THIS COMPARISON, WE SELECTED THE BEST 

FEATURE SELECTION METHOD FOR THE FOLLOWING 

PHASES. GA-PCA WAS CHOSEN, AS IT DEMONSTRATED 

SUPERIOR PERFORMANCE COMPARED TO THE OTHER THREE 

METHODS . 

best results by pursuing dual objectives within the 

objective function: feature reduction and maintaining or 

improving performance. Leveraging the genetic algorithm, 

we optimized parameters for both the SVM and PCA 

algorithms alongside feature selection. However, a 

limitation arose concerning the PCA algorithm parameter, 

specifically the number of output components. This 

parameter cannot exceed the number of inputs, thereby 

constraining feature selection within the genetic algorithm. 

Consequently, the number of selected features might be 

smaller than the PCA parameter value, as both values are 

generated together in the chromosome and cannot be 

independently manipulated. To address this issue, we 

resolved to choose the smaller value between the number 

of features and the PCA parameter, subsequently 

optimizing this parameter accordingly. 

1)  Pseudocode algorithm: 

Algorithm 1. Feature Selection with optimize 

parameters 

1 Input:  

   DataSet can be from dataset1 or dataset2. 

2 Output:  

   SF is Selected Features,  

   AUC is the performance of selected features. 

3 Let Train = split(DataSet, train_size = 0.80) 

4 Let Test = split(DataSet, test_size = 0.20) 

5 Let dimension = Number of feature from Train 

6 Let ps = Population Size 

7 Let MNI = Max Number of Iteration 

8 Let pp = Elite Number 

9 Let SF = GA(dimension, ps, MNI, pp) 



 

 

Algorithm 1. Feature Selection with optimize 

parameters 

10 Let AUC = f(SF) 

 

Algorithm 2. GA-based Feature Selection 

1 procedure GA(dimension, ps, MNI, pp) 

2 Input:  

   dimension is Number of feature from Train,  

   PS is Population Size,  

   MNI is Max Number of Iteration,  

   PP is Elite Number. 

3 Output:  

   Return best solution. 

4 Definition:  

   Parent is Chromosomes selected from the          

previous iteration,  

   P1 is Parent1,  

   P2 is Parent2,  

   POP is Population list,  

   𝑃𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛  is Probability of Mutation. 

5 #Initialization (binary form) 

6 For each i in PS 

7 Let 𝑃𝑂𝑃𝑖 . 𝐷𝑖𝑚 = Random_List(dimension) 

8 #Population Assessment 

9 For each i in PS 

10 Let 𝑃𝑂𝑃𝑖 . 𝐹𝑖𝑡 = Fitness(𝑃𝑂𝑃𝑖 . 𝐷𝑖𝑚) 

11 #Select parent 

12 Let POP = sort(POP, Fit) 

13 Let POP = 𝑃𝑂𝑃1..𝑃𝑃 

14 #Termination 

15 For each j in MNI 

16 For each i in (PP + 1 .. PS) Step 2 

17 #Crossover 

18 Let r1 = Random_Int(PP) 

19 Let P1 = 𝑃𝑂𝑃𝑟1. 𝐷𝑖𝑚 

20 Let r2 = Random_Int(PP) 

21 Let P2 = 𝑃𝑂𝑃𝑟2. 𝐷𝑖𝑚 

22 Let C1, C2 = Cross(P1, P2) 

23 #Mutation 

24 If Rand() <𝑃𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 Then 

25 Let C1 = Mut(C1) 

26 Let C2 = Mut(C2) 

27 Let 𝑃𝑂𝑃𝑖 . 𝐷𝑖𝑚, 𝑃𝑂𝑃𝑖+1. 𝐷𝑖𝑚 = C1, C2 

28 Let 𝑃𝑂𝑃𝑖 . 𝐹𝑖𝑡 = Fitness(C1) 

Algorithm 2. GA-based Feature Selection 

29 Let 𝑃𝑂𝑃𝑖+1. 𝐹𝑖𝑡 = Fitness(C2) 

30 #Select parent 

31 Let POP = sort(POP, Fit) 

32 Let POP = 𝑃𝑂𝑃1..𝑃𝑃 

33 Return 𝑃𝑂𝑃1 . 𝐷𝑖𝑚 

 

Algorithm 3. GA Fitness Function 

1 procedure FITNESS(Feat_Set) 

2 Input:  

   Feat_Set is Selected Features. 

3 Output:  

   Return value of objective function. 

4 Let 𝑊1 = .01 

5 Let 𝑊2 = .99 

6 #Decode chromosome 

7 Let 𝐿𝑒𝑛 = Feat_Set.lenght 

8 Let 𝑋1 = decode(𝐹𝑒𝑎𝑡_𝑆𝑒𝑡1..8) 

9 Let 𝑋2 = decode(𝐹𝑒𝑎𝑡_𝑆𝑒𝑡8..15) 

10 Let 𝑋3 = decode(𝐹𝑒𝑎𝑡_𝑆𝑒𝑡15..23) 

11 Let SF = 𝐹𝑒𝑎𝑡_𝑆𝑒𝑡23..𝐿𝑒𝑛 

12 If 𝑋1 <1 or 𝑋2 <1 or 𝑋3 <1 Then 

13 Return 100000000 

14 #Number of selected feature 

15 Let 𝑂𝑏𝑗𝑒𝑐𝑡1 = sum(SF) 

16 If 𝑂𝑏𝑗𝑒𝑐𝑡1 <= 0 Then 

17 Return 100000000 

18 #Performance measurement by classifier 

19 Let 𝑂𝑏𝑗𝑒𝑐𝑡2 = 𝑓(𝐹𝑒𝑎𝑡_𝑆𝑒𝑡) 

20 If 𝑂𝑏𝑗𝑒𝑐𝑡1 <= 0 Then 

21 Return 100000000 

22 Let 𝑂𝑏𝑗𝑒𝑐𝑡2 = 𝑂𝑏𝑗𝑒𝑐𝑡2
−1 

23 Return 𝑊1 ∗ 𝑂𝑏𝑗𝑒𝑐𝑡1 + 𝑊2 ∗ 𝑂𝑏𝑗𝑒𝑐𝑡2 

 

Algorithm 4. Classifier 

1 procedure f(Feat_Set) 

2 Input:  

   Feat_Set is Selected Features. 

3 Output:  

    AUC is the performance of selected features. 

4 #Decode chromosome 

5 Let 𝐿𝑒𝑛 = Feat_Set.lenght 

6 Let 𝑋1 = decode(𝐹𝑒𝑎𝑡_𝑆𝑒𝑡1..8) 



 

 

Algorithm 4. Classifier 

7 Let 𝑋2 = decode(𝐹𝑒𝑎𝑡_𝑆𝑒𝑡8..15) 

8 Let 𝑋3 = decode(𝐹𝑒𝑎𝑡_𝑆𝑒𝑡15..23) 

9 Let SF = 𝐹𝑒𝑎𝑡_𝑆𝑒𝑡23..𝐿𝑒𝑛 

10 #Select subset from chromosome 

11 Let Train_subset = select(SF, Train) 

12 Let Test_subset = select(SF, Test) 

13 #PCA 

14 Let n_components = min(SF, 𝑋3) 

15 Let pca = PCA(n_components) 

16 Let 
Train_subset.x=pca.fit_transform(Train_subset.x) 

18 Let Test_subset.x=pca.transform(Test_subset.x) 

19 #SVM 

20 Let Classifier= SVM(kernel=’rbf’, C=𝑋1, 𝛾=𝑋2) 

21 Classifier.fit(Train.x, Train.y) 

22 Let proba = Classifier.predict_proba(Test.x) 

23 #Metric 

24 Let AUC = Metric(Test.y, proba) 

25 Return AUC 

Algorithm 1 takes a dataset as input and outputs the 

selected features along with their corresponding AUC 

values. It divides the dataset into training and test sets in an 

80:20 ratio, respectively, and sets the parameters for the 

genetic algorithm. In line 5, the total number of features is 

specified. Line 6 sets the number of individuals in the 

initial population. Line 7 determines the number of 

generations for the genetic algorithm. Line 8 sets the 

number of elite individuals eligible for reproduction. Line 

9 executes the genetic algorithm to obtain the selected 

features. Finally, the AUC value of the selected features is 

computed in the last line.  

Algorithm 2 is a genetic algorithm that takes the number 

of features, initial population size, number of generations, 

and number of elite individuals as input. It outputs a binary 

string representing the selected features, where ’1’ 

indicates the presence of a feature and ’0’ indicates 

absence. At the outset, the population is randomly 

initialized in lines 6 and 7. The fitness of each chromosome 

is evaluated using the objective function in lines 1 and 9. 

Next, parents are selected based on their fitness, with the 

top-performing individuals considered elites. Elite parents 

are chosen first, followed by selection from the remaining 

individuals, as depicted in lines 12 and 13.  

Subsequently, two parents are randomly chosen from 

the elite population, and their chromosomes are combined 

to generate two children, as shown in lines 18 to 22. 

Mutation is then applied to the children with a low 

probability in lines 24 to 26. The fitness of the children’s 

chromosomes is calculated, and the best-performing ones 

are selected as parents for the next generation. This process 

continues until the specified number of generations is 

reached. Finally, the best chromosome is returned as the 

optimal solution.  

In Algorithm 3, the objective function is defined. It 

takes a chromosome as input and returns the value of the 

objective function. Firstly, the chromosome is decoded to 

obtain the selected features, represented by ’1’s in the 

chromosome. The number of selected features is then 

counted. The algorithm has two objectives: reducing the 

number of features and maximizing performance. For the 

first objective, which aligns with the optimization policy of 

the genetic algorithm, the number of selected features is 

counted without modification and included in the output. 

For the second objective of maximizing performance, the 

inverse of the performance metric is calculated to ensure 

that higher values correspond to better performance. Both 

objectives are then weighted by their importance factors, 

multiplied, and summed to obtain the value of the objective 

function.  

In Algorithm 4, the input is a chromosome, and its 

corresponding function is returned. The chromosome is 

decoded to determine which genes are responsible for 

constructing and optimizing the C and Gamma parameters 

in the Radial Basis Function Support Vector Machine 

(RBF-SVM), and which genes are responsible for 

constructing and optimizing the number of components for 

Principal Component Analysis (PCA). Before 

classification, the features are transformed into 

components using PCA, which simplifies the classification 

process and enhances accuracy. The classification is then 

performed using SVM, and the accuracy of the 

classification is assessed using the Area Under the Curve 

(AUC) metric.  

2) Fitness: The fitness of each chromosome is assessed by 

the objective function, which takes into account the 

selection of features and parameters of the algorithms 

pertinent to the problem. The fitness value assigned to each 

chromosome is a positive numerical representation of its 

suitability. During the selection stage, the probability of 

selecting each chromosome is determined based on its 

fitness, ensuring a proportional representation according to 

the appropriate size of each chromosome.  

Figure 6 illustrates the structure of the objective function 

utilized in the GA-PCA algorithm. This algorithm 

optimizes the parameters of RBF-SVM and PCA, 

alongside feature selection. Initially, both the training and 

test datasets are transformed into components using PCA. 

Subsequently, SVM is trained using the training 

components, and predictions are made for the test data. The 

performance of the model is then evaluated using the AUC 

metric. 

Equation (9) outlines the calculation of the fitness function, 

which comprises two distinct objectives. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑊1 ∗ 𝑂𝑏𝑗1 + 𝑊2 ∗ 𝑂𝑏𝑗2 (9) 



 

 

 

 

FIGURE 6.   THE STRUCTURE OF THE GA-PCA FITNESS 

FUNCTION. 

Where 𝑊𝑖 represents the weight of each objective in the 

fitness function. The sum of these weights should equal 1, 

as indicated in Equation (10)  below. 

𝑊1 + 𝑊2 = 1 (10) 

Equation (11) computes the AUC value, representing 

the performance of the classifier on validated COVID-19 

data for predicting the need for ICU intensive care. A larger 

AUC value indicates better performance. In the context of 

the evolutionary algorithm’s objective function, 

optimization involves minimizing the objective function. 

Therefore, the performance of the classifier is inversely 

related to the objective function, with its reduction 

represented by a negative power, which increases as the 

performance decreases. 

𝑂𝑏𝑗1 = 𝑓(𝑥)−1 (11) 

Equation (12) shows the number of selected features 

that should be reduced. 

𝑂𝑏𝑗2 = ∑ 𝐹

𝑛

𝑖=1

𝑒𝑎𝑡𝑢𝑟𝑒𝑖 
(12) 

 

2) Chromosome: In a genetic algorithm, a chromosome 

(sometimes referred to as a genome) represents a proposed 

solution to the problem being solved by the algorithm. It 

consists of a set of parameters that define the solution. The 

chromosome is the practical representation of the solution 

in the implementation of the algorithm. Depending on the 

nature of the problem, a chromosome can be encoded as a 

string of discrete variables, binary values, or continuous 

values. As depicted in Figure 7, f is a bit string of length n 

, where a value of 1 indicates the presence of a feature in 

that column, and 0 indicates absence. The penalty 

coefficient C and the parameter γ are related to the SVM 

parameters that require optimization. n components 

represents the PCA parameter, specifying the number of 

output columns. 

2) Architecture: In Figure 8, you can observe the 

architecture of the GA-PCA approach. Prior to entering the 

SVM algorithm, the data undergoes dimensionality 

reduction through the PCA algorithm. Subsequently, the 

processed data is fed into the SVM algorithm. The 

performance of SVM is notably influenced by its core 

parameters, namely, the gamma γ and penalty coefficient 

C. Enhancing classification accuracy hinges on selecting 

appropriate parameters. Numerous methods exist for 

parameter optimization, among which genetic algorithms 

stand out. Feature subset selection is another critical aspect 

affecting classifier performance. Extraneous features 

contribute additional, often irrelevant information, which 

can inflate computational complexity and diminish 

classification accuracy. By managing both feature 

selection and parameter optimization, algorithms like 

genetic algorithms streamline this process. 

 II.  Phase2: Instance selection with normal range 

Limiting the normal range of features has numerous 

applications across various fields, including research, 

industries, and sciences. This practice involves defining the 

acceptable range for each feature relative to others, 

ensuring a certain criterion is consistently met. 

In our research, it entails establishing a range of 

characteristics within which a patient does not require 

specialized care. For instance, in the heavy transportation 

industry, it could involve determining the optimal load 

capacity for vehicles to minimize wear and tear, ensuring 

they remain in optimal condition and avoid transitioning 

from a functional state to a breakdown condition. In our 

dataset, we have two classes: the first class represents 

individuals in a healthy or non-critical condition, denoted 

by zero, while the second class indicates individuals who 

require hospitalization in the ICU, denoted by one. 

During the data preprocessing stage, when separating 

samples for training, we follow a specific procedure. For 

each feature, we select samples from the zero class that fall 

within the normal range and exclude any zero-class 

 

FIGURE 7.  CHROMOSOME REPRESENTATION IN GA-PCA. 

 



 

 

samples outside this range. Similarly, we exclude class one 

samples within the normal range and select those outside 

it. We ensure that the number of samples selected from 

both classes is equal to the size of the smaller set.  

This approach aims to enhance the performance of the 

fitness function by focusing on samples that are most 

relevant to distinguishing between the two classes. Indeed, 

this operation is crucial for selected features because any 

adjustments made to a feature can significantly affect the 

determination of the ranges for other features. 

 For instance, let’s consider the scenario of estimating 

the load range in cargo vehicles. If we take the number of 

wheels of the vehicle as a feature, whether the vehicle has 

one wheel or eighteen wheels would drastically impact our 

load range estimation.  

Similarly, in our dataset, modifying the values or ranges 

of certain features can greatly influence the determination 

of normal ranges for other features. Therefore, it’s essential 

to carefully preprocess and select features to ensure the 

accuracy and reliability of our analysis and predictions. 

 

 FIGURE 8. CONCEPTUAL OVERVIEW OF GA-PCA IN PHASE 

ONE. 

This process is crucial for defining the normal ranges 

for features. As depicted in Figure 9, the genetic algorithm 

generates the normal ranges. Each feature is associated 

with genes responsible for determining its upper and lower 

bounds. To simplify computations, these bounds are 

specified as percentages and decoded within the target 

function. 

 

In the objective function, illustrated in Figure 10, 

samples within the normal range for each sorted feature 

(class zero) are segregated, while samples outside this 

range (class one) are separated. This results in two sets, 

which are balanced and merged through under-sampling to 

create the training dataset. This dataset is then used for 

classifying the test data. The optimal normal ranges for 

features are determined based on the highest criterion, such 

as the F1-score. 

 

 FIGURE 10. INSTANCE SELECTION PROCESS BASED ON 

NORMAL RANGES GENERATED BY GENETICS. 

We divide the steps of sample selection with normal 

range in the objective function into 4 steps and describe 

them separately: 

 

 FIGURE 11. INSTANCE SELECTION PROCESS WITH NORMAL 

RANGES. 

 

1) Step1: Building a set of zeros and ones: In Figure 11, 

we place a loop around the number of features, 

representing the iteration over each feature, and extract the 

normal range generated by the genetic algorithm for each 

one. We extract samples belonging to class zero whose 

 

 FIGURE 9. CHROMOSOME REPRESENTING NORMAL RANGE. 

 



 

 

values fall within the normal range and include them in the 

set labeled as zeros. Similarly, we include samples 

belonging to class one whose values lie outside the normal 

range in the set labeled as ones. This process continues  

 

until we have iterated through all the features. Thus, we 

obtain two sets: one containing samples with class zero 

within the normal range and the other containing samples 

with class one outside the normal range.  

2) Step2: Under-sampling: Exactly, in the previous step, 

the number of sets of zeros and ones may not be equal. To 

address this, we perform under-sampling to balance the 

two sets.  

3) Step3: Building a train set: We merge the set of zeros 

and ones to create a new training dataset. This training set 

is correctly balanced in terms of the target class.  

4) Step4: The value of the objective function: The 

XGBoost classifier is trained using the training set from the 

previous stage, and then tested using the reserved test 

dataset. The performance is evaluated using the F1-score 

criterion. The resulting score guides the genetic algorithm 

in selecting the best normal ranges based on the function 

value. This process iterates within the genetic algorithm 

until convergence, aiming to optimize the selection of 

normal ranges for the features. 

 III.  Description of selected features 

In this section, we will discuss the direction and ranking 

of the selected features from the initial stage.  

1) Impact of feature direction in the target class: 

Determining the direction for features has numerous 

applications in medicine, industry, and various scientific 

fields. It indicates the trend in which each attribute can 

move relative to other attributes to transition from one 

target class to another. In this study, it illustrates the 

direction in which a feature tends to move as the patient’s 

condition deteriorates.  

The direction for each sorted feature is determined by 

observing the highest number of class one samples in the 

upper or lower range. These two intervals start from the 

middle or average and extend to the top or bottom.  

2) Ranking the selected features in the evolution 

algorithm and classifier: In feature selection using 

evolutionary algorithms, the importance of selected 

features is not inherently provided. To determine the 

importance of these features, we divide the data into 

different segments and feed them into the proposed 

algorithm. If a feature appears frequently across these 

segments, it indicates its significance. Thus, we count the 

frequency of each selected feature across all segments. The 

frequency of a selected feature across all segments 

indicates its importance. As shown in Equation (13), the 

ranking of a feature is calculated as the frequency of that 

feature divided by the sum of frequencies of all features. 

The results are visualized in Figure 12 using a bubble chart. 

𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑛
𝑗=1

 
(13) 

 

FIGURE 12. THE BUBBLE GRAPH DEPICTING THE RANK, DIRECTION, AND FREQUENCY OF SELECTED FEATURES ACROSS 

DIFFERENT FOLDS BY GA-PCA IN DATASET 1. 

 



 

 

 

In Figure 12, the lower horizontal axis illustrates the 

frequency of each selected feature across different 

categories, while the upper horizontal axis represents the 

ranking percentage of each selected feature. The vertical 

axis indicates the number of features at each frequency 

level. Each bubble represents a selected feature, with its 

size indicating its importance. The direction of each feature 

is also depicted within its respective bubble. Features with 

larger circles on the right side are considered more 

important and stand out from the rest. Notably, features 

such as breathing rate and fever are among the initial 

selections made by the evolutionary algorithm. 

EXPERIMENTAL EVALUATION AND RESULTS 

I.  Evaluation methods 

In Dataset 1, as depicted in Figure 4, there are two 

classes, labeled 0 and 1, which are imbalanced. Class 0 

constitutes 73% of the data, while class 1 constitutes 27%.  

On the other hand, in Dataset 2, as shown in the same 

figure, the imbalance is even more pronounced. Here, the 

ratio of class 0 is 99%, while the ratio of class 1 is only 1%.  

Due to this class imbalance, the research has 

transitioned from using Accuracy to F1-Score as the 

evaluation metric. However, when calculating the F1-

Score, division by zero issues may arise due to the limited 

number of samples in batch processing. Therefore, to 

address this, the Area Under the Curve (AUC) metric is 

utilized, obtained via batch processing to compute P-value 

and T-test.  

 

 

Table 4 outlines the parameters and results of the GA-

PCA algorithm. Each row represents a specific category, 

identified by a number. Within each category, the 

algorithm optimizes the SVM parameters (C and Gamma) 

and the PCA component parameter. The outputs for each 

batch include the execution time, a convergence graph, and 

performance metrics, measured by the AUC. Batch 

TABLE 4. EQUIVALENCE TABLE OF BIOLOGICAL CONCEPTS AND GENETIC ALGORITHM ELEMENTS. 

Step C 𝛾 components AUC Time Convergence curve 

1 99 7 172 0.99 385 

 
2 13 1 206 0.99 342 

 
3 23 32 14 1.0 346 

 
4 11 1 187 0.99 357 

 
5 38 18 81 0.99 414 

 
6 45 11 65 0.95 365 

 
7 15 5 96 0.99 405 

 
8 64 73 159 0.97 361 

 
Average    0.99 372  

 



 

 

execution is particularly useful for comparing Static 

Analysis results with other algorithms. It reduces the 

computational load, especially during the classifier’s 

training phase, leading to significant time savings. 

Additionally, the convergence diagram of the objective 

function is smoothed by a Simple Moving Average (SMA) 

with a period of 10, offering a clearer view of convergence 

trends within each category.  

 

Table 5 presents the parameters and outcomes of the 

GA-PCA algorithm. Each row corresponds to a specific 

category identified by a number. The C and Gamma 

parameters for SVM, as well as the component parameter 

for PCA, are optimized by the algorithm within each 

category. The execution time, convergence graph, and 

performance, indicated by the AUC, are the outputs 

obtained for each batch. Batch execution proves 

advantageous for comparing the results of Static Analysis 

with other algorithms. It effectively reduces the 

computational load, especially during the training phase of 

the classifier, resulting in significant time savings. 

Additionally, the convergence diagram of the objective 

function is complemented by the Simple Moving Average 

(SMA) diagram, calculated with a period of 10, providing 

TABLE 5. FEATURE SELECTION RESULTS FOR DATASET 1. 

Step # of features Characteristic value 

1 16 74, 75, 80, 87, 90, 107, 117, 129, 134, 147, 182, 195, 203, 206, 208, 227 

2 12 9, 17, 76, 110, 132, 140, 153, 162, 212, 213, 215, 216 

3 16 4, 6, 19, 33, 50, 75, 85, 106, 159, 197, 198, 203, 206, 207, 214, 215 

4 10 12, 76, 89, 104, 151, 194, 195, 198, 215, 228 

5 17 32, 37, 43, 47, 55, 67, 68, 81, 98, 110, 115, 133, 138, 144, 198, 203, 220 

6 14 7, 10, 49, 66, 95, 109, 113, 132, 142, 180, 186, 195, 197, 206 

7 12 3, 13, 41, 73, 90, 131, 162, 180, 209, 220, 222, 227 

8 13 20, 34, 47, 48, 58, 84, 111, 117, 144, 166, 184, 198, 221 

Average 13.75 ’RESPIRATORY_RATE’ is common feature to all Steps 

 

TABLE 6. AUC RESULTS OF THE PROPOSED METHOD COMPARED TO OTHER FEATURE SELECTION 

METHODS IN DATASET 1. 

Feature Selection Method Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Average 

1) Binary PSO-SVM 0.95 0.96 0.96 0.98 0.88 0.86 0.96 0.95 0.94 

2) Binary PSO-PCA 0.97 0.94 0.96 0.99 0.94 0.93 0.95 0.94 0.95 

3) WOA-SVM 0.92 0.95 0.87 0.91 0.87 0.75 0.90 0.90 0.88 

4) WOA-PCA 0.93 0.93 0.94 0.89 0.91 0.87 0.92 0.93 0.92 

5) GA-SVM 0.99 0.98 0.98 0.99 0.99 0.96 0.99 0.97 0.98 

6) GA-PCA (Proposed) 0.99 0.99 1.0 0.99 0.99 0.95 0.99 0.97 0.99 

7) Random Forest 0.95 0.79 0.91 0.82 0.82 0.76 0.94 0.855 0.86 

8) XGBoost 0.92 0.87 0.87 0.83 0.86 0.78 0.89 0.88 0.87 

9) AdaBoost 0.94 0.83 0.89 0.86 0.84 0.83 0.87 0.87 0.87 

10) Gradient Boosting 0.93 0.88 0.89 0.90 0.84 0.79 0.97 0.85 0.89 

11) Decision Tree 0.93 0.85 0.90 0.83 0.85 0.81 0.90 0.84 0.87 

12) Variance (Filter) 0.90 0.85 0.75 0.76 0.72 0.75 0.88 0.87 0.81 

13) Pearson Correlation (Filter) 0.86 0.69 0.79 0.69 0.68 0.83 0.87 0.81 0.78 

 



 

 

a smoother representation of the convergence trends within 

the same category.  

In Table 6, each row corresponds to a category 

identified by a number, where the selected feature names 

and the number of selected features are listed. 

II.  Comparison of three optimization algorithm 

In the Fitness function, we pursue two goals: one is to 

enhance performance, and the other is to limit the number 

of features. Therefore, to assess the result, we need to 

examine the combined outcome. Figure 13 compares the 

performance of six algorithms. In part (a), GA-PCA 

exhibits the best results with less distortion compared to 

other approaches. It shows comparable results to GA-SVM 

but with less distortion. In part (b), WOA-PCA displays 

slightly worse AUC but not significantly different from the 

best AUC. However, it exhibits considerable distortion 

compared to WOA-SVM, yet it remains close to AUC. In 

part (c), PSO-PCA shows visible distortion, but it still 

achieves a respectable AUC. Compared to PSO-SVM, 

there is some distortion, but it remains close to AUC. 

 

FIGURE 13. COMPARATIVE ANALYSIS OF THREE OPTIMIZATION ALGORITHMS BASED ON AUC SCORES FOR DATASET 1. 

 

 

FIGURE 14. COMPARISON OF THREE OPTIMIZATION ALGORITHMS WITH FEATURE OF DATASET 1. 

 



 

 

Therefore, PCA has effectively reduced distortion across 

these algorithms. 

  

Figure 14 compares the feature reduction achieved by 

six algorithms. In part (a), GA-PCA demonstrates the best 

fit and is close to achieving the minimum number of 

features while also achieving the highest AUC. Part (b) 

converges rapidly and significantly reduces the number of 

features; however, this extreme reduction in features leads 

to lower performance compared to competitors. Part (c) 

selects numerous features, deviating from our goal of 

minimizing the feature count. Therefore, the genetic 

algorithm outperforms others in this aspect, and PCA 

effectively accelerates the reduction of selected features.  

In Figures 13 and 14, the methods are compared using 

the entire dataset over 150 iterations (indeed, in feature 

selection using optimization algorithms, as the number of 

iterations increases, more features are progressively 

TABLE 7. AVERAGE COUNT OF FEATURES FOR THE PROPOSED METHOD COMPARED TO OTHER FEATURE SELECTION 

METHODS IN DATASET 1. 

Feature Selection Method Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Fold8 Average 

1) Binary PSO-SVM 60 61 54 59 63 61 56 56 58.75 

2) Binary PSO-PCA 60 60 63 64 73 81 53 52 63.25 

3) WOA-SVM 4 12 9 13 7 3 6 7 7.62 

4) WOA-PCA 9 11 9 8 4 6 4 5 7 

5) GA-SVM 20 21 14 16 18 17 13 18 17.12 

6) GA-PCA (Proposed) 16 12 16 10 17 14 12 13 13.75 

7) Random Forest 16 12 16 10 17 14 12 13 13.75 

8) XGBoost 16 12 16 10 17 14 12 13 13.75 

9) AdaBoost 16 12 16 10 17 14 12 13 13.75 

10) Gradient Boosting 16 12 16 10 17 14 12 13 13.75 

11) Decision Tree 16 12 16 10 17 14 12 13 13.75 

12) Variance (Filter) 17 12 16 10 17 13 12 13 13.88 

13) Pearson Correlation (Filter) 16 12 16 10 17 14 12 13 13.75 

 
TABLE 8. STUDENT’S T-TEST AND P-VALUE OF DATASET 1. 

Feature 

Selection 

Average 

AUC 

Average 

Feature 

AUC Total Time 

T-test P-value 

1) Binary PSO-SVM 0.94±0.04 58.75±2.90 2.73 0.008 5254 

2) Binary PSO-PCA 0.96±0.02 63.25±9.11 3.09 0.004 9258 

3) WOA-SVM 0.88±0.06 7.63±3.31 4.55 0.0002 1263 

4) WOA-PCA 0.92±0.02 7.00±2.45 6.22 0.00001 1476 

5) GA-SVM 0.99±0.01 17.13±2.57 -0.07 0.47 2105 

6) GA-PCA (Proposed) 0.99±0.02 13.75±2.28 — — 2973 

7) Random Forest 0.86±0.7 13.75±2.28 5.00 0.00009 0.28 

8) XGBoost 0.87±0.04 13.75±2.28 7.63 <0.00001 0.28 

9) AdaBoost 0.87±0.04 13.75±2.28 8.31 <0.00001 0.28 

10) Gradient Boosting 0.89±0.05 13.75±2.28 5.00 0.00009 0.52 

11) Decision Tree 0.87±0.04 13.75±2.28 7.65 <0.00001 0.18 

12) Variance (Filter) 0.81±0.07 13.88±2.42 6.68 <0.00001 0.40 

13) Pearson Correlation (Filter) 0.78±0.07 13.75±2.28 7.20 <0.00001 9.30 

 



 

 

eliminated. Once the number of features reaches a 

reasonable threshold during any iteration, the execution of 

the program can be halted. For this reason, we set the 

maximum number of iterations to 150.). In contrast, the 

other method divides the data into smaller categories and 

evaluates different feature selection techniques within each 

category. Table 6 lists the feature selection methods in the 

rows, with the results for each category of Dataset 1 

presented in the columns. The average results are provided 

in the last column. Similarly, Table 7 shows the feature 

selection methods in the rows and the selected features for 

each category of Dataset 1 in the columns, with the average 

number of selected features summarized in the final 

column.  

In Table 9, the rows represent the feature selection 

methods, while the columns display the results in each 

TABLE 9. AUC RESULTS OF THE PROPOSED METHOD COMPARED TO OTHER FEATURE SELECTION METHODS IN  

DATASET 2. 

Feature Selection Method Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Average 

1) Binary PSO-SVM 0.92 0.92 0.98 0.97 0.96 0.99 1.00 0,96 

2) Binary PSO-PCA 0.93 0.98 0.97 1.00 0.97 1.00 0.99 0.97 

3) WOA-SVM 0.92 0.95 0.99 0.91 0.97 1.00 0.98 0.96 

4) WOA-PCA 0.93 0.96 0.99 0.99 0.96 1.00 0.99 0.97 

5) GA-SVM 0.98 0.98 1.00 1.00 1.00 1.00 1.00 0.99 

6) GA-PCA (Proposed) 0.98 0.97 1.00 0.99 1.00 1.00 1.00 0.99 

7) Random Forest 0.73 0.70 0.98 0.5 0.53 0.65 0.5 0.66 

8) XGBoost 0.70 0.74 1.00 0.50 0.95 0.94 0.99 0.84 

9) AdaBoost 0.74 0.50 0.92 0.5 0.5 0.5 0.5 0.60 

10) Gradient Boosting 0.72 0.71 1.00 0.93 0.95 0.65 0.52 0.79 

11) Decision Tree 0.75 0.50 0.98 0.54 0.96 0.98 0.52 0.75 

12) Variance (Filter) 0.71 0.91 0.95 0.81 0.85 0.94 0.99 0.88 

13) Pearson Correlation (Filter) 0.5 0.55 0.54 0.50 0.54 0.86 0.60 0.59 

 

TABLE 10. AVERAGE COUNT OF FEATURES FOR THE PROPOSED METHOD COMPARED TO OTHER FEATURE SELECTION 

METHODS IN DATASET 2. 

Feature Selection Method Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Average 

1) Binary PSO-SVM 17 16 17 14 11 13 16 14.85 

2) Binary PSO-PCA 15 25 11 12 11 14 14 14.57 

3) WOA-SVM 2 9 1 4 1 1 2 2.85 

4) WOA-PCA 2 3 2 3 2 2 6 2.85 

5) GA-SVM 5 6 3 3 2 1 1 3.00 

6) GA-PCA (Proposed) 5 4 2 3 2 2 1 2.71 

7) Random Forest 5 4 2 3 2 2 1 2.71 

8) XGBoost 5 4 2 3 2 2 1 2.71 

9) AdaBoost 5 4 2 3 2 2 1 2.71 

10) Gradient Boosting 5 4 2 3 2 2 1 2.71 

11) Decision Tree 5 4 2 3 2 2 1 2.71 

12) Variance (Filter) 19 39 28 53 56 46 48 41.29 

13) Pearson Correlation (Filter) 13 11 11 15 12 14 14 12.86 

 



 

 

category with Dataset 2. The average of these results is 

calculated in the last column. Similarly, Table 10 presents 

the feature selection methods as rows and the selected 

features in each category with Dataset 2 as columns. The 

average of these features is calculated in the last column.  

Student’s t-test and P-value are indeed commonly used 

statistical tests to compare the performance of different 

models or methods in machine learning. The P-value helps 

assess the significance of the observed differences between 

two models, indicating the probability of obtaining the 

observed results by random chance alone. A smaller P-

value suggests a more significant difference between the 

models.  

On the other hand, Student’s t-test evaluates whether the 

means of two sets of data are significantly different from 

each other. It provides a measure of the extent to which the 

observed differences between the models are likely due to 

actual differences in their performance rather than random 

variation. A smaller t-test value indicates a smaller 

difference between the means of the two models, implying 

greater similarity.  

By applying these statistical tests to the results obtained 

from different feature selection methods, researchers can 

quantitatively assess the significance of the observed 

performance differences and make informed decisions 

about the effectiveness of each method. 

How to calculate Student’s t-test is stated in Equation 

(14), where 𝑆1
2 and 𝑆2

2 correspond to the variances of 

category one and two, respectively. And 𝑁1 and 𝑁2 

represent the number of observations in categories 1 and 2, 

respectively, while 𝑋1 and 𝑋2 denote the means of 

categories 1 and 2, respectively. 

In Tables 8 and 11, GA-PCA emerges with the highest 

AUC and maintains an acceptable number of selected 

features. Following closely is GA-SVM, notable for its 

minimal time expenditure and high P-value, indicating a 

strong similarity in results with GA-PCA. 

𝑡 =
𝑋1 − 𝑋2

√(
(𝑁1 − 1)𝑆1

2 + (𝑁2 − 1)𝑆2
2

𝑁1 + 𝑁2 − 2
) (

1
𝑁1

+
1

𝑁2
)

 
 

(14) 

TABLE 11. STUDENT’S T-TEST AND P-VALUE OF DATASET 2. 

Feature 

Selection 

Average 

AUC 

Average 

Feature 

AUC Total Time 

T-test P-value 

1) Binary PSO-SVM 0.97±0.03 14.86±2.10 2.03 0.03 6293 

2) Binary PSO-PCA 0.98±0.02 14.57±4.50 1.46 0.08 11109 

3) WOA-SVM 0.96±0.03 2.86±2.70 2.27 0.02 1056 

4) WOA-PCA 0.98±0.02 2.86±1.36 1.47 0.084 1306 

5) GA-SVM 0.99±0.01 3.00±1.77 -0.54 0.30 2112 

6) GA-PCA (Proposed) 0.99±0.01 2.71±1.28 — — 3252 

7) Random Forest 0.66±0.16 2.71±1.28 5.15 0.00011 0.17 

8) XGBoost 0.84±0.18 2.71±1.28 2.23 0.02271 0.22 

9) AdaBoost 0.60±0.16 2.71±1.28 6.19 0.00002 0.16 

10) Gradient Boosting 0.79±0.17 2.71±1.28 3.07 0.00484 0.22 

11) Decision Tree 0.75±0.21 2.71±1.28 2.84 0.00741 0.05 

12) Variance (Filter) 0.88±0.09 41.29±12.53 3.02 0.00530 9.53 

13) Pearson Correlation (Filter) 0.59±0.12 12.86±1.46 8.49 <0.00001 31.11 

 

TABLE 12. THE PERFORMANCE OF THE PROPOSED APPROACH ON DIFFERENT DATASETS. 

ID Dataset name Feature F1-Score 

Base Line Phases Base Line Phase1 Phase2 

1 200+ Financial Indicators of US stocks (2014-2015)  221 4 0.44 0.49 0.66 

2 COVID-19 - Clinical Data to assess diagnosis  227 20 0.93 0.91 0.95 

3 Diagnosis of COVID-19 and its clinical spectrum  107 17 0.99 0.99 0.99 

4 African Country Recession Dataset (2000 to 2017)  49 17 0.91 0.88 0.94 

 



 

 

The outcomes of other algorithms, compared to GA-

PCA, exhibit P-values below 0.05 in Table 8, and below 

0.1 in Table 11. These lower P-values signify significant 

and discernible differences in performance compared to 

GA-PCA.  

Furthermore, we conduct a comparative analysis 

between the results of GA-PCA and other algorithms using 

Student’s T-test, providing additional insights into the 

significance of the disparities observed.  

 III.  Explain of features by normal calculation of range, 

direction and ranking of features 

In Table 12, we observe the impact of the proposed 

algorithm on feature reduction and performance across 

four datasets. Indeed, we have implemented our approach 

on various datasets and problems to demonstrate that it is 

well-generalized, rather than being effective only for a 

specific dataset or problem domain. The table presents the 

initial number of features in the first column and the final 

number of features after applying the algorithm in the 

second column. Subsequent columns display the F1-score 

values for the entire dataset, performance after feature 

selection, and performance after sample selection, 

respectively. The first row highlights a significant 

improvement in performance achieved by the proposed 

algorithm, particularly evident in the substantial increase in 

performance from the initial dataset value. Despite higher 

initial values for the remaining datasets, notable reductions 

in features are observed across all datasets, demonstrating 

the efficacy of the algorithm in feature reduction. 

 In Table 13, 14, 15, and 16, each row corresponds to a 

selected feature. The first column denotes the row number, 

while the second column lists the name of the feature. The 

third column displays the optimal normal range selected by 

the genetic algorithm for sample selection. As the data is 

normalized, these ranges are represented in decimal form. 

To streamline the computational process and reduce 

complexity, only a percentage of feature values are 

selected for decoding in the objective function, with other 

values selected relative to them. The actual values are 

normalized using MinMaxScaler, ensuring they fall within 

the interval specified by the beginning and end of the range.  

If a feature exhibits a characteristic direction, it is 

indicated in the third column, denoted by an up or down 

TABLE 13. PHASE2: NORMAL RANGE, DIRECTION, AND RANKING OF SELECTED FEATURES IN COVID-19 - CLINICAL 

DATA TO ASSESS DIAGNOSIS. 

ID Selected Features Normal Range Direction Ranking 

Start End   

1 DISEASE GROUPING 5 0.65 0.68 ⇓ 0.909% 

2 HTN 0.35 0.72 ⇓ – 

3 OTHER 0.12 0.76 ⇑ 0.909% 

4 ALBUMIN MIN -0.08 0.04 ⇑ 0.909% 

5 CALCIUM MEAN 0.38 0.80 ⇑ 1.818% 

6 FFA MIN -0.61 -0.17 ⇓ – 

7 HEMATOCRITE MEAN 0.00 1.00 ⇓ 4.545% 

8 LACTATE MIN -0.16 0.52 ⇓ 2.727% 

9 NEUTROPHILES MEDIAN -0.38 0.12 ⇑ 2.727% 

10 P02 VENOUS MEDIAN -0.16 -0.04 ⇓ 2.727% 

11 PCR MIN 0.26 0.28 ⇓ 4.545% 

12 PH VENOUS MIN -0.42 0.00 ⇓ 1.818% 

13 POTASSIUM MAX -0.20 0.48 ⇑ 1.818% 

14 TTPA MIN -0.04 0.36 ⇓ 2.727% 

15 UREA MAX 0.38 0.56 ⇓ 1.818% 

16 TEMPERATURE MEAN 0.00 0.18 ⇓ 6.364% 

17 RESPIRATORY RATE MEDIAN -0.50 -0.42 ⇑ 10.909% 

18 BLOODPRESSURE SISTOLIC MAX -0.48 0.96 ⇑ 4.545% 

19 RESPIRATORY RATE DIFF REL -0.86 -0.38 ⇑ 10.909% 

20 TEMPERATURE DIFF REL -0.14 -0.07 ⇑ 6.364% 

 



 

 

arrow to signify a high-risk direction. The fourth column 

represents the ranking of the selected features, reflecting 

their importance. The rank of each feature is determined by 

calculating the frequency of occurrence of each feature, 

excluding min, max, median, mean, diff, and diff rel, 

relative to the total frequency of features.  

TABLE 14. PHASE2: NORMAL RANGE OF SELECTED 

FEATURES IN DIAGNOSIS OF COVID-19 AND ITS CLINICAL 

SPECTRUM. 

ID Selected Features Normal Range 

Start End 

1 Leukocytes 1.60 6.40 

2 Basophils 26.38 31.42 

3 Monocytes -4.38 13.94 

4 Rhinovirus/Enterovirus -0.67 1.46 

5 Chlamydophila pneumoniae -2.61 0.43 

6 Parainfluenza 4 -1.98 -1.01 

7 Inf A H1N1 2009 -0.14 0.58 

8 Proteina C reativa mg/dL 14.57 15.61 

9 Potassium -3.99 5.21 

10 Sodium -11.93 6.89 

11 Influenza B, rapid test 0.01 4.25 

12 Aspartate transaminase 14.43 25.12 

13 Urine - Density -0.75 6.34 

14 Urine - Leukocytes -2.14 -1.09 

15 Urine - Granular cylinders -6.01 -0.95 

16 Lactic Dehydrogenase -6.20 2.79 

17 pO2 (arterial blood gas analysis) 19.04 26.20 

 

In Table 12, the results are presented using a single 

metric. However, in Figure 15 and 16, the performance 

results are displayed across multiple metrics. The first 

column from the right represents the AUC metric, the 

middle column displays the F1-score metric, and the left 

column showcases the Accuracy metric.  

TABLE 16. PHASE2: NORMAL RANGE OF SELECTED 

FEATURES IN 200+ FINANCIAL INDICATORS OF US STOCKS 

(2014-2015). 

ID Selected Features Normal Range 

Start End 

1 Revenue 0.86 2.75 

2 Revenue Growth 12.96 31.87 

3 Cost of Revenue -16.55 26.05 

4 Gross Profit -20.65 -16.72 

 

 

FIGURE 15.  THE EVALUATION PERFORMANCE OF THE 

PROPOSED APPROACH ON THE ”200+ FINANCIAL 

INDICATORS OF US STOCKS (2014-2015)” DATASET IN 

DIFFERENT PHASES. 

The bottom row represents the initial values or the class 

with all the data, the middle row corresponds to phase 1 or 

after feature selection, and the top row depicts phase 2 or 

after sample selection.  

In Fig. 15, the data pertains to the dataset of 200+ 

Financial Indicators of US stocks (2014-2015). All metrics 

demonstrate improvement across all stages, indicating 

progress. Conversely, in Fig. 16, the data is related to the 

COVID-19 - Clinical Data to assess diagnosis dataset. 

While there is a slight reduction after feature selection 

across the metrics, selecting the sample not only 

compensates for this decline but also showcases progress. 

 

 

FIGURE 16.  THE EVALUATION PERFORMANCE OF THE 

PORPOSED APPROACH ON THE ”COVID-19 - CLINICAL 

DATA TO ASSESS DIAGNOSIS” DATASET IN DIFFERENT 

PHASES. 



 

 

DISCUSSION AND CONCLUSION  

This research aims to achieve the following objectives 

in Dataset 1: 

 Increase the accuracy in flattening the demand 

curve for intensive care beds with 97% AUC 

score. Although a high AUC was achieved in 

the first phase, the model’s greater focus on 

saving lives makes it even more valuable. 

Additionally, while new datasets may not yield 

the desired high results in the first phase, our 

method has the potential to achieve the 

expected outcomes in the second phase.  

 Selection of 20 influential features as listed in 

Table 13.  

 Determination of the normal range for each 

feature as shown in Table 13.  

 Selection of the direction for each feature, as 

explained in Table 13.  

 Determination of the rank and importance of 

each feature, as specified in Table 13.  

This paper delves into the analysis of medical data and 

blood tests, aiming to elucidate key characteristics. Unlike 

traditional blood tests where each parameter has an 

independent target class (e.g., blood sugar for diabetes), 

Dataset 1 combines all characteristics to predict admission 

to the ICU for confirmed COVID-19 patients. Given the 

collective impact of these features on the target class, 

meticulous feature selection in phase one was imperative. 

GA-PCA emerged as the optimal feature selection 

algorithm, generating selected features for phase two. This 

phase aimed to eliminate noisy and ineffective features to 

mitigate their adverse effects on the normal range. 

Sampling with a normal range helped address feature 

imbalance issues.  

Furthermore, feature direction was explored to 

understand the collective movement of features towards 

changing the target class. For instance, in Dataset 1, each 

feature’s direction indicates the patient’s risk level and 

their need for ICU care. Additionally, features were ranked 

within the evolutionary algorithm based on their frequency 

across batch-implemented data, expressed as a percentage 

relative to the total feature frequency. This comprehensive 

approach facilitates a deeper understanding of feature 

dynamics and their impact on the target class. 

TABLE 15. PHASE2: NORMAL RANGE AND DIRECTION OF SELECTED FEATURES IN AFRICAN COUNTRY RECESSION 

DATASET (2000 TO 2017). 

ID Selected Features Normal Range Direction 

Start End 

1 pop 37.13 101.67 ⇓ 

2 emp 6.73 63.21 ⇓ 

3 emp_to_pop_ratio 0.26 0.55 ⇑ 

4 hc 1.85 2.52 ⇑ 

5 ccon 425958.66 516639.53 ⇓ 

6 cda 20856.78 726816.93 ⇓ 

7 cn 409063.39 2598259.61 ⇓ 

8 ck 0.02 0.02 ⇓ 

9 ctfp 0.58 0.94 ⇓ 

10 cwtfp 0.14 0.60 ⇓ 

11 rconna 671006.10 678599.50 ⇓ 

12 rdana 546327.73 573495.20 ⇓ 

13 rnna 267127.36 1223063.84 ⇓ 

1 rkna 0.67 2.60 ⇑ 

15 rtfpna 0.77 1.46 ⇓ 

16 rwtfpna 0.74 0.98 ⇓ 

17 labsh 0.32 0.35 ⇑ 

18 irr 0.02 0.41 ⇓ 

19 delta 0.07 0.09 ⇓ 

 

 



 

 

FUTURE WORK 

Determining the normal range of a feature holds diverse 

applications across science and industry. One notable 

application lies within the automotive and transportation 

sector. Our future endeavors could involve establishing the 

normal load limit for heavy transport vehicles. This entails 

understanding the optimal load capacity or range that a 

vehicle can safely transport while minimizing wear and 

tear or the likelihood of mechanical failures.  

Such analysis could involve monitoring various 

parameters, including sensor data embedded within the 

vehicle, which is recorded over time intervals. These 

parameters could include factors such as engine 

performance, temperature, pressure, and more. By 

categorizing samples into healthy and damaged classes, 

predictive models can be developed to anticipate potential 

failures.  

For instance, if sensor data indicates deviations from the 

normal range, signaling potential failure or wear in a 

particular vehicle component, proactive maintenance can 

be performed. This predictive maintenance approach helps 

replace or repair faulty parts before they lead to accidents 

or breakdowns, thus enhancing safety and operational 

efficiency on the road. 
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