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Abstract. In this article, the behavior of event-based and rule-based systems is modeled
using Hierarchical Fuzzy Petri nets (HFPN). In such systems, a large number of rules
with fuzzy variables can lead to increase complexity in deducing behavior. So far, several
FPN methods have been presented for these systems. In this paper, we present an HFPN
leading to a reduction in the number of arcs, places and transitions as well as a reduction
in the ML language code on Petri-net arcs and the increase of the code constructiveness.
Finally, we applied our method for modeling and reasoning a secure water treatment
system against burst pipe attack.
Keywords: State Transition Table, Fuzzy Petri Net, Fuzzy Inference, Critical Systems,
Knowledge-Based Systems

1. Introduction
Usually, the behavior of non-deterministic (fuzzy) systems [1] is described by fuzzy

rules where challenges exist in incorporating uncertainties, particularly environmental un-
certainties, into their models. Based on FPNs, various studies have addressed cases in
which rules are expressed using high-level variables [2]. Their application in the reasoning
process has resulted in more realistic outcomes [3]. However, these methods become very
complicated and unimplementable for systems with a large number of rules and variables.
In our previous work [4], we presented a model for reasoning and visualizing a large num-
ber of rules in a hierarchical manner, as well as managing numerous features using colored
tokens. However, it does not incorporate the considerations discussed in previous studies
regarding rules. In our other work [5], inspired by [6], we described the rule based system
using a State Transition Table (STT) and map it to FPN.

Our current paper aims to address the shortcomings of the methods previously pre-
sented. We describe the behavior of the system using STT whose each row corresponds
to a rule where each rule consists of several conditions and a conclusion; then, STT is
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mapped FPN leading to creating a model that serves as the knowledge base for the sys-
tem. However, when a system contains too many rules and many fuzzy variables, the sys-
tem’s behavior becomes complex and difficult to deduce. Using the hierarchical structure,
HFCPN (Hierarchical fuzzy colored Petri nets) can mange such complexity. Moreover, it
can decrease the number of transitions and places when there exist the same conditions in
multiple rules; this reduces the complexity. To tackle these issues, inspired by our previous
method [5], we present a new HFCPN model where the reasoning process is incorporated
into the model. The technique we used for reducing transitions and places in our HFPN is
enriching and deepening the conditions on the HFPN transitions using the ML language
functions. While our previous model uses n conditions on n Petri-net transitions for n
fuzzy values of a variable, in the current model we used a case command, instead. This led
to two advantages: (1) reducing the time order of checking conditions on the transitions,
(2) constructive making decisions on the arcs using the case command, and (3) making
more understandability of the Petri-nets using the aggregation of if commands to a case
command. The the case command uses jump table where the case checking has the execu-
tion constant order (O(c)) for checking n conditions. We could not use the case command
in our previous method because of scattering conditions on arcs. The detail of using ML
programming with Colored Petri nets (CPN) was explained in [7,8].

We applied our proposed method to monitor the attacks on a Secure Water Treatment
System where the system behavior is modeled and inference is done to detect attacks [9].

2. Proposed model
Our proposed model can solve problems where the behavior of the system is described

in STT whose typical row was shown in Table 1. Each row is mapped to a rule and as
the table shows, each row indicates the change of n variable value that leads to making
a transition from a normal state to an abnormal one. A change in a variable value is
considered as event and no change in a variable value is done as a condition. Based on
the mathematical method used in the reasoning process and the opinion of domain ex-
perts, various parameters of the rule can be created. A rule contains parts: (1) premise
and (2) conclusion where the premise part contains events and conditions with probabil-
ities. Moreover, (1) the threshold values for the conditions, which expressed in terms of
propositions, and the conclusion, and(2) the certainty factor for the rule are considered.

Table 1. The STT structure

Previous
State variable 1 ... variable n Current

State

normal condition or event of variable 1 or - ... condition or event of variable n or - one of
m abnormal states

Given a system has n variables (features) and m + 1 states consisting an unknown
state and m abnormal ones, Table 1 consisting of a number of rows is created. When the
value of a variable remains unchanged during the transition from the previous state to
the current one, it is considered as a condition; otherwise, it is done as an event, which is
shown in "@old value_new value" where the old and new values indicate the variable value
in the previous and current states, respectively. Notation "-" for a variable value indicates
"don’t care” (no event and no condition). Finally, after the reasoning process, the degree
of truth of abnormal states is determined. After mapping the problem specification to
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STT, for each row, a rule is extracted where conditions and events constitute the premise
part of the rule and the abnormal state is considered as the conclusion part.

We use a function called res function for reasoning in which the extracted rules are
exploited. In addition to the rules, this function incorporates a mathematical algorithm
in the model. In a transition from the previous state to the current one, the proposed
model considers the change/no change of values of the system variables. Then, it calls the
res function to perform the reasoning process according to the reasoning method.

STT is mapped to the proposed model is performed as follows:
Variable j (column j) is mapped to:

• A high-level transition
• (degree of truth, value), which is part of the n-colored token and indicates the

value and degree of truth of variable j.
• The previous value of variable j is considered as Lvarj,
• The current value of variable j is considered as Cvarj,
• The check result for variable j (condition or event) is considered as varj
• The truth degrees of conditional propositions are considered as pj1 and pj2. If
varj is an event, both variables will contain a value, but if is a condition, pj1
will contain a value and pj2 will be null.

• Two low-level transitions are included to evaluate the condition or event.
• each abnormal state is mapped to a place in HFPN at level zero.

Figures 1, 2, and 3 depict a general model of a system with n variables, representing
levels zero, 1, and n of the model, respectively. Each colored token represents n values
and truth degrees for n variables at each moment where are enclosed in quotation marks
("") and in brackets ([ ]), respectively. By firing a transition, the colored tokens from the
places “last state” and “current state” are combined and are put in the place “ready to
compare”, which initiates checking the status of the variables. In the proposed model, to
determine the change/no change of each variable value, we consider one level (except the
zero level) for the variable. Therefore, for n variables, the proposed model will have n+1
levels.

The process of checking the status of variables is similar at all levels. We explain level
1 (Fig. 2), for example. The colored token in place “Ready to compare” in Fig. 1 evaluates
the status of variables and enters level 1. Each of the expression variables on the input arc
in level 1 contains the value and the truth degree, which are referred to by #1 and #2,
respectively. Two variables, Lvar1 and Cvar1 represent the values of the first variable in
the last and current states, respectively. Expressions #1Lvar1 and #1Cvar1 are used in
the conditions for low-level transitions related to the first variable for enabling and firing
the corresponding transition. Having fired the transition, there are two situations in which
a distinct colored token enters the next level for continuing the process:

• If the variable value dose not change in the transition from the previous state to
current state (i.e., it is considered as a condition), expression #1Lvar1, #2Lvar1,[]
replaces expression (Lvar1,Cvar1) as a conclusion and it is transferred to the next
level. The null expression “[]” remains null because the value of the variable has
not changed.

• If the variable value changes (i.e. it is considered as an event), expression
"@"^#1Lvar1^ "_"^"value",#2Lvar1,#2Cvar1 as the conclusion replaces expres-
sion (Lvar1,Cvar1) and it is transferred to the next level.



SCJ Acce
pte

d...

Coulmns

Ready
to compare

End Condition

System
States

Variable 1

((Lvar1,Cvar1) , (Lvar2,Cvar2) ,
(Lvar3,Cvar3) , ... (Lvarn,Cvarn))

(var1 ,p11 , p12 , var2 , p21, p22 , ... , varn , pn1, pn2)
Abnormal 1

Abnormal m

if  DegreesOfTruth =[TD0,TD1,...,TDm-1]
then empty

else 1`"+"

input (var1,p11,p12,var2,p21,p22,var3,p31,p32,...,varn,pn1,pn2);
output (DegreesOfTruth);
action
(res(var1,var2, ... ,varn,p11^^p12^^p21^^p22^^p31^^p32^^...^^...^^pn1^^pn2));

(Cvar1 , Cvar2 , Cvar3 , … , Cvarn )

(Cvar1 , Cvar2 , Cvar3 , … , Cvarn )

(Cvar1 , Cvar2 , Cvar3 , … , Cvarn )

(Lvar1 , Lvar2 , Lvar3 , … , Lvarn )
Last
State

Abnormal 2

(Cvar1 , Cvar2 , Cvar3 , … , Cvarn )

(Cvar1 , Cvar2 , Cvar3 , … , Cvarn )

1

2
3

4

Unknown
if DegreesOfTruth = empty then 1`"Unknown situation has occurred" else empty

if DegreesOfTruth = empty then empty
else if List.nth(DegreesOfTruth,0) <> 0.0  then 1`List.nth(DegreesOfTruth,0) else empty

if DegreesOfTruth = empty then empty
else if List.nth(DegreesOfTruth,1) <> 0.0  then 1`List.nth(DegreesOfTruth,1) else empty

if DegreesOfTruth = empty then empty
else if List.nth(DegreesOfTruth,m-1) <> 0.0  then 1`List.nth(DegreesOfTruth,m-1) else empty

Then

(Cvar1 , Cvar2 , Cvar3 , … , Cvarn )Current
State

Figure 1. Level zero of the proposed model.

Variable 2

Variable 1
Condition

((Lvar1,Cvar1) , (Lvar2,Cvar2) ,
(Lvar3,Cvar3) , ... (Lvarn,Cvarn))

(var1 , p11, p12 , (Lvar2,Cvar2) ,
(Lvar3,Cvar3) , ... (Lvarn,Cvarn))

1`(#1Lvar1,#2Lvar1,[],(Lvar2,Cvar2) , (Lvar3,Cvar3), ... , (Lvarn,Cvarn))

[#1Lvar1 = #1Cvar1]

Variable 1
Event

[#1Lvar1 < > #1Cvar1]
case #1Cvar1 of
"value 1" = > 1`("@"^ #1Lvar1^"_"^"value 1",#2Lvar1,#2Cvar1,(Lvar2,Cvar2) ,(Lvar3,Cvar3) , ... , (Lvarn,Cvarn))
| "value 2" = > 1`("@"^ #1Lvar1^"_"^"value 2",#2Lvar1,#2Cvar1, (Lvar2,Cvar2) , (Lvar3,Cvar3) , ... ,(Lvarn,Cvarn))

| "value a1" = > 1`("@"^ #1Lvar1^"_"^"value a1",#2Lvar1,#2Cvar1, (Lvar2,Cvar2) , (Lvar3,Cvar3) , ... , (Lvarn,Cvarn))

...

((Lvar1,Cvar1) , (Lvar2,Cvar2) ,
(Lvar3,Cvar3) , ... (Lvarn,Cvarn))

Figure 2. Level 1 of the proposed model.

(var1 ,p11 , p12 , var2 , p21, p22 , ... ,
varn-1 , p(n-1)1, p(n-1)2 , (Lvarn,Cvarn))

Variable n
Condition

1`(var1 ,p11 , p12 , var2 , p21, p22 , ... , varn-1 , p(n-1)1, p(n-1)2 , #1Lvarn,#2Lvarn,[])

[#1Lvarn = #1Cvarn]

Variable n
Event

[#1Lvarn < > #1Cvarn]
case #1Cvarn of
"value 1" = > 1`((var1 ,p11 , p12 , var2 , p21, p22 , ... , varn-1 , p(n-1)1, p(n-1)2 ,"@"^ #1Lvarn^"_"^"value 1",#2Lvarn,#2Cvarn)
| "value 2" = > 1`((var1 ,p11 , p12 , var2 , p21, p22 , ... , varn-1 , p(n-1)1, p(n-1)2 ,"@"^ #1Lvarn^"_"^"value 2",#2Lvarn,#2Cvarn)

| "value an" = > 1`((var1 ,p11 , p12 , var2 , p21, p22 , ... , varn-1 , p(n-1)1, p(n-1)2 ,"@"^ #1Lvarn^"_"^"value an",#2Lvarn,#2Cvarn)
...

(var1 ,p11 , p12 , var2 , p21, p22 , ... ,
varn-1 , p(n-1)1, p(n-1)2 , (Lvarn,Cvarn))

Figure 3. Level n of the proposed model.
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By firing transition and executing the code segment of this transition, at zero level, res
function, which is performed for the reasoning process, is called. The input parameters
of this function are var1, var2,..., and varn, which contains the specified status for n
variables, and an array, containing the truth degrees of the n variables, which is defined as
operator "^^", and p11^^p12^^p21^^p22^^...^^pn1^^pn2 is added. Variable DegreesOfT-
ruth contains the output of res function and a list, each element of which indicates the
truth degree of one of the abnormal states. The probability of not entering abnormal
states based on the type of the variable used in the reasoning process, replaces terms
TD0, TD1,..., and TDm-1 at the zero level of the model.

3. Case study
Consider a water treatment system with five variables: FIT101, LIT101T, MV101,

P101, and P102. The system can encounter four abnormal states pipe bursts, tank over-
flow, tank underflow, and pump damage where the water flows stops.

Suppose the scenario where an attacker initiates a pipe burst attack by changing the
pump value from ’off’ to ’on.’ In this scenario, the variables MV 101, P101, and P102 have
deterministic values with a probability of 1, while variable FIT101 and LIT101 exhibit
fuzzy values with probabilities of 1 and 0.7, respectively. Table 2 shows the token values
in the model at the previous state and the current one (attack).

Table 2. Tokens values for previous state and current abnormal state (as
an attack) in the model.

Variables of system
(FIT101,LIT101,MV101,P101,P102) Colored token

(min,high,close,on,off)
normal state(previous state) 1(̀("min",1.0),("high",0.7),("close",1.0),("on",1.0),("off",1.0))

(min,high,close,on,on)
attack state(current state) 1(̀("min",1.0),("high",0.7),("close",1.0),("on",1.0),("on",1.0))

Moreover, Eq. 1 is implemented in res function for the reasoning process. In this
equation, based on the rule corresponding to the system’s status, the minimum truth
degree of the variables in the premise part of the rule is considered according to [2]. This
value is then multiplied by the rule certainty factor and displayed as the conclusion of
reasoning in the model. The number of truth degrees varies from 1 to 2n.

αAttack = min(α1, α2, ..., αj) ∗ CF 1 ≤ j ≤ 2n (1)
In the following rule, the first list in the conclusion part of the rule indicates the rule
is related to which attack, where value 1 denotes the desired attack and value zero does
another attack. The second list shows the certainty factor associated with the rule. Figure
4 shows the reasoning outcomes for this particular system status.

if fit101="min" and also lit101="high" and also mv101="close" and
also p101="on" andalso p102="@off_on" then [[1,0,0,0],[0.98]]

4. Analysis of results
In this section, considering our previous model, we analyze results of the current model.

Given n and m show the number of system variables and the number of abnormal states,



SCJ Acce
pte

dFigure 4. The result of the reasoning process.

respectively. Additionally, let a1 to an denote the number of values considered for each
variable from 1 to n, respectively. According to the case study in the previous section, m
= 4 and n = 5. The number of values considered for the variables are a1 = 3, a2 = 5,
a3 = 3, a4 = 3 and a5 = 3, respectively. Table 3 shows the parametric formulas for
calculating the number of arcs, transitions, and places for the case study. In this table,
for the current model, there are seven fixed places at level zero (see Fig. 1), one of which
shows the unknown abnormal state. Additionally, there are m places for abnormal states,
totaly m+7. For all levels but levels zero and n (see Fig. 2), there are three places, totally
3(n − 1). At the last level of the model (Fig. 3), there are 2 places. Therefore, the total
number of places in the current model can be expressed as 3(n− 1) +m+ 9.

Table 3. Total transitions, places, and arcs in the current and the pre-
vious model for the case study.

Previous Model Current Model Case study in:Previous model-Current model
The number of transitions 2(a1 + ... + an)+n+5 3n+4 44-19

The number of places 4(n-1)+m+11 3(n-1)+m+9 31-25
The number of arcs 5(a1 + ... + an)+2n+m+14 6n+m+12 113-46

In contrast, the previous model contains eight fixed places at level zero (Fig. 5), along
with m places for the m abnormal states, totaling m + 8. For n variables, all levels but
levels zero and n had four places, totaly 4(n− 1). The last level (Fig. 6) always contains
three places; therefore, we have totally 4(n−1)+m+11. For the transitions, the current
model has four low-level transitions at level zero (Fig. 1). For each variable n, there
are two low-level and one high-level transitions, totally 3n + 4. In contrast, the number
of low-level transitions the in the previous model depends on the number of the values
assigned to the variables. In the previous model, there are five low-level transitions at
level zero (Fig. 5). For other levels, there are two low-level transitions for each fuzzy
value considered for each variable and one high-level transition for each variable, totally
2(a1 + ...+ an) + n+ 5.

For the arcs, in the previous model, there exist 16 + m arcs at level zero (Fig. 5)
where m denotes the number of input arcs to abnormal states at level zero. At each other
level, there are five arcs corresponding to each fuzzy value assigned to variables, totally
5(a1 + ... + an). In all levels, but level zero, there were two arcs for entering and exiting
the high-level transition, totally 2(n−1) arcs. The sum of all arcs becomes 5(a1+ ...+an)
+ 2n +m+14. In the current model, there are 14 arcs at level zero (Fig. 1) and four arcs
for each variable in order to enter and exit from low-level transitions (at the level of the
variable, Figs. 2 and 3); therefore, there will exist totally 4n arcs. For all variables but
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Figure 5. Level zero of the previous model

Figure 6. Level n of the previous model

the last one, two arcs are considered for entering and exiting from high-level transitions,
totally 2n − 1 arcs (Fig. 3). Therefore, the sum of all arcs are 6n + m + 12 where m
denotes the number of input arcs to abnormal states at level zero.

As Table 3 shows, the number of transitions, places, and arcs decreases, comparing
to the previous model. In fact, in the current model, only two low-level transitions are
considered for each variable but in the previous one, for the fuzzy values defined for each
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variable, two low-level transitions were created. When a system contains a large number of
fuzzy values for variables, it becomes a complex model. However, by mapping the process
of checking the state change of each variable onto arcs, the model becomes less dependent
on the number of the fuzzy values assigned to each variable, regardless of their diversity
or multitude. This is why the current method leads to less complexity of the model.

4.1. Complexity reduction factor. The Main reason for the complexity reduction
in our current HFPN is that the transitions that were considered for the fuzzy values in the
previous HFPN, are removed from the model in the current one; instead, case statements
were added to the arcs and the conditions for checking variables were moved from arcs to
transitions. For instance, consider level 1 of the HFPN, which are shown in Fig. 7 for the
previous model and in Fig. 2 for the current one. Transitions “value 1” to “value an” and
“_value 1” to “_value an for “Variable 1” in Fig. 7 were removed from Fig. 2. Similarly,
we have such reduction for other levels. Consider the first levels of the previous model in
Fig. 7 and the current one in Fig. 2 and their last levels in Figs. 6 and 3; for each level
that is added to the previous and current models for checking a variable, the current one
will have a place less than the previous one. Also, level zero of the current one has a place
less than the previous one. Therefore, the current model totally will have n+1 places less
than the previous one.

Figure 7. Level 1 of the previous model

Time complexity. The time complexity for our current and previous methods are
considered as follows. Consider Table 3; among 3n+ 4 transitions, 2n+ 4 transitions fire
in the current model but in the previous model, among 2(a1 +...+ an)+n+5 transitions,
at most 3n+5 transitions fire, which is about n transitions more than the current model.

5. Conclusion
In this article, we introduced a model based on a hierarchical fuzzy color Petri net for

modeling systems, which is less complicated than the previous one. The proposed model
is highly flexible in incorporating various parameters for the rules and expressing them
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using different high-level variables and mathematical reasoning methods based on algebra.
We used a case command instead of several if commands leading to using a constructive
command. Moreover, The number of transitions was reduced leading to reducing the time
order of checking conditions on the transitions, constructive making decisions on the arcs,
and making more understandability of the Petri-nets using the aggregation of conditions
on variable to a case command.
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