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Abstract: Attention deficit hyperactivity disorder is a neurodevelopmental disorder that typically begins in early 

childhood and poses significant challenges during school years. This disorder is characterized by impulsive behaviors, 

inattention, and difficulties with concentration. Early diagnosis and prompt treatment can effectively manage this 

condition. Accurate diagnosis of ADHD can be achieved through the precise analysis of electroencephalography 

signals. This article proposes a brain modeling approach using a cellular neural network in various frequency bands to 

diagnose ADHD. Firstly, the inter-area connections in the brains of individuals with hyperactivity are estimated by 

assessing the spectral coherence function between channels. Subsequently, the intra-area connections are obtained 

using a cellular neural network. The results obtained indicate that the intra and inter-area connections in the central, 

frontal, and parietal regions of the brains of individuals with hyperactivity differ from those of normal individuals in 

the beta and gamma frequency bands. Consequently, it can be inferred that the presence of disparities in intra and 

inter-area connections between the brains of individuals with ADHD and normal individuals results in distinct brain 

functionality within these two groups. 
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1. Introduction 

Attention deficit hyperactivity disorder (ADHD) is a 

condition characterized by difficulties in paying and 

maintaining attention mentally. The symptoms of 

this disorder in adults can manifest in various ways, 

including changeable relationships, bad jobs or 

academic performances. While ADHD typically 

emerges in childhood, there are cases where it may 

not be diagnosed until adulthood. Psychologists 

diagnose this disorder based on the American 

standard diagnostic criteria (DSM-IV-TR)[1]. 

Hyperactivity is typically categorized into three 

types, each of which is briefly discussed below. The 

first type is attention deficit disorder, characterized 

by a person's difficulty in concentrating and being 

easily distracted. The second type is hyperactivity 

disorder, in which individuals are excessively 

physically active, constantly jumping and running. 

They struggle to remain seated and tend to be overly 

talkative. The third type is combined disorder, 

which encompasses both hyperactivity disorder and 

attention deficit disorder [2]. 

Electroencephalography has been instrumental in 

diagnosing and studying hyperactivity disorder in 

individuals [3]. Given the intricate nature of the 

information derived from EEG signals, it is crucial 

to employ appropriate features for analysis. By 

accurately recording these electrical signals and 

subjecting them to meticulous processing, it 

becomes feasible to extract valuable information 

and features. Through comparative analysis and 

study of these processed signals, it is possible to 

diagnose various brain and mental disorders with a 

high degree of accuracy. 

In recent years, numerous researchers have focused 

on leveraging machine learning and signal 

processing techniques to identify and diagnose 

diverse mental and brain disorders by extracting 

crucial features from these signals. Various machine 

learning methods have been employed to achieve 

this goal. These methods involve the utilization of 

expert knowledge and skills to implement 

algorithms, incorporating the significant features 

extracted from the data [4, 5]. 

Muller et al. introduced a machine learning system 

that employed support vector machine (SVM) 

classification to distinguish hyperactive adults from 

healthy control groups. Their approach relied on 

measuring the characteristics of event-related 

potentials derived from EEG signals for the 

classification process [6, 7]. 

In the study conducted by Chandana et al., various 

brain regions were examined in individuals with 

hyperactivity. The research aimed to investigate 

potential differences between the brain areas of 

hyperactive individuals and healthy individuals in 

two states: eyes closed and eyes open. The 

researchers employed neural networks and extracted 

energy characteristics within the alpha, beta, 

gamma, and theta frequency bands to distinguish 

between the two groups [8]. 

Moriguchi and Hiraki employed near-infrared 

spectroscopy to measure proxy features related to 

brain function in individuals with hyperactivity [9]. 

They highlighted the utility of near-infrared 

spectroscopy in measuring cerebral blood flow, 

which provides valuable insights into brain activity 

[10]. 

SVM is a method that has shown promise in 

improving accuracy in detecting hyperactivity [11]. 

Yasumura et al. utilized SVM to analyze brain 

activity and diagnose hyperactivity specifically in 

the frontal region of the brain. Their study reported 

an overall accuracy rate of 86.26% in identifying 

hyperactivity [12]. 

Metsis et al. developed a novel sparsity-based 

feature selection method for identifying array 

comparative genomic hybridization (aCGH) data 

that can aid in classifying different disease subtypes. 

This method effectively reduces the number of 

features by employing a regression model or SVM 

to shrink irrelevant coefficients, resulting in the 

elimination of those features [13, 14]. 
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Mohammadi et al. proposed an approach to 

distinguish children with ADHD from healthy 

children using EEG signals recorded during a 

specific task. They extracted nonlinear features such 

as fractal dimensions, approximate entropy, and 

Lyapunov view from the EEG signals for diagnosis. 

By applying the mRMR (Minimal Redundancy 

Maximal Relevance) method and DISR (Double 

Input Symmetrical Relevance) method using a 

multilayer perceptron (MLP), they achieved 

accuracies of 92.28% and 93.65%, respectively [15]. 

Mogadam et al. utilized EEG fractality extraction 

for diagnosing ADHD. They employed the graph 

coloring algorithm to analyze connectivity 

networks, representing functionally connected brain 

areas, along with EEG fractality. Their findings 

demonstrated a deficit in communication between 

the occipital and frontal lobes in ADHDs [16]. 

In another study, He et al. employed a convolutional 

neural network-LSTM model to process EEG data 

for high-accuracy classification. They observed that 

ADHD patients exhibited predominantly short range 

connections, whereas the normal group displayed 

long-range connections between the occipital lobe 

and left anterior temporal areas [17]. 

Motamed et al., in a 2022 study, distinguished 

between healthy individuals and those with 

hyperactivity using FFT features and PCA feature 

reduction. They employed a convolutional neural 

network model to separate the two groups and 

achieved an accuracy of 91% [18]. 

Taghibeyglou et al. conducted a study using 

electroencephalography (EEG) to diagnose ADHD. 

They achieved 95.8% accuracy in identifying this 

disorder by employing convolutional neural network 

and classical machine learning models [19]. 

Loh et al. employed ECG data and a 1D 

convolutional neural network to classify ADHD and 

normal groups. They utilized the gradient-weighted 

class activation mapping function to highlight 

crucial ECG features at specific time points that 

significantly impacted the classification score. Their 

approach yielded a diagnostic accuracy of 96.4% for 

ADHD [20]. 

Bakhtiari et al. introduced a new feature extraction 

method using the evaluation of dynamic 

connectivity tensors among EEG electrodes for 

building the input formula of the classification 

model. These tensors encompass correlations 

between EEG channels in various time intervals, 

allowing for the preservation of spatial and temporal 

structures of the EEG data while reducing input 

dimensions of the model. They utilized a 

convolutional short-term memory network to 

differentiate between ADHD and normal children 

[21]. 

One of the biggest challenges in the diagnosis of 

ADHD is the lack of attention and insufficient 

attention of computer engineering and medical 

engineering researchers to this issue. Most of the 

studies that have been done so far have examined 

the connections of brain areas and how their parts 

work without using a single model. After examining 

the electroencephalographic signals of ADHD 

people, this article will find a model using cellular 

machine learning for the brain pattern of 

hyperactive and normal children. In addition, the 

way of organizing and connecting the areas of the 

two groups and their differences are shown. In this 

article, with the help of features extracted from EEG 

signals and neural networks, the brain pattern of 

hyperactive and healthy people will be obtained. 

The presented model is able to present the general 

and partial function of the brain and has the ability 

to present the differences in the brain connections of 

people with hyperactivity. 

This article is organized in such a way that after the 

introduction, the proposed method is presented in 

the second part. In the third part, the results will be 

analyzed and in the fourth part, the conclusion will 

be expressed. 

 

2. Materials and Method 
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The proposed model is designed based on brain 

architecture and function and includes three 

main phases: In the first phase, pre-processing 

and preparation should be done on the signals. 

The 3 minutes noise-free parts are selected for 

each person, and then normalization and 

filtering are done. In the second phase, the 

design of the proposed model is done, and in 

the third phase, the obtained results will be 

analyzed. The proposed method is shown in 

figure (1), diagramatically. In the following, all 

the steps will be explained in detail. 

 

2.1. Database 

The database used includes EEG signals with the 

protocol of character recognition in the cartoon and 

counting the number of characters. The number of 

121 signals was recorded, of which 61 people were 

diagnosed with ADHD and 60 of them were 

diagnosed as normal. 10-20 standard with 21 scalp 

electrodes and 128 Hz sampling rate was used for 

recording. Electrodes include Fp1, Fp2, F3, F4, F7, 

F8, Fz, Cz, Pz, C3, T3, C4, T4, P3, P4, T5, T6, O1 

and O2 and reference electrodes A1 and A2. The 

age range of people with ADHD is 7 to 12 years. 

The database is accessible from the site (https://ieee-

dataport.org/open-access/eeg-data-adhd-control-

children). The 3 minutes noise-free parts are 

selected for each person and this 3 minutes is 

divided into 5 second parts (640 epochs). 

 

2.2. Wavelet Transform 

The electroencephalography signal is decomposed 

into different bands using the wavelet transform. In 

this article, the signal is decomposed into alpha, beta 

and gamma bands. By filtering the signal with high-

pass filter      and low-pass filter     , the 

frequency domain is cut and decomposed into A and 

D coefficients. This approximation operation 

produces a set of approximate coefficients. Equation 

(1) calculates the wavelet transform of the 

continuous signal      in the function  , with the 

scale a and the transfer parameter b [22, 23].  

 

Discrete wavelet transform is calculated using 

equation (2). 

2.3. Energy 

The energy of the discrete signal      in the time 

interval            is calculated by equation 

(4): 

 

 

  

Figure 1. Flowchart of the proposed model 
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In this article, signal energy is defined and 

calculated as follows [13]: 

So that N is the number of di signal samples and the 

period is T. 
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2.4. Proposed Model 

In this article, a model by a cellular neural network 

based on the structure of the brain will be presented. 

The model considers 17 areas, encompassing both 

the left and right hemisphere regions. Each area is 

associated with a set of electrodes. Consequently, 

the entire brain is represented by 17 cells, which 

correspond to the 17 electrodes. In this model, the 

input for each area is composed of the input signals 

received by the respective electrodes, along with 

feedback signals from non-adjacent areas. 

Furthermore, each cell within an area receives input 

from its corresponding electrode, as well as 

feedback signals from neighboring cells. 

To establish the connections between the areas 

(electrodes), the article proposes determining the 

degree of connectivity. This is achieved by 

measuring the spectral coherence function between 

the electrodes, which quantifies the strength of the 

connections. Subsequently, the cellular neural 

network demonstrates the connections within each 

area. Both steps, determining the inter-area 

connections and showcasing the intra-area 

connections through the cellular neural network 

(CNN), will be explained in detail. 

 

2.5. Spectral Coherence 

In the proposed model, the coherence function is 

used to calculate the interaction between different 

channels. Coherence analysis is a non-invasive 

method to calculate the degree of coupling between 

brain channels. In this calculation, the average 

periodogram is used in each period with an overlap 

and a 50% Hamming window to reduce the effect of 

edges. If two channels      and      are considered 

with the intersection spectrum     ƞξ  and self-

corresponding spectra     ξξ and     ƞƞ , the 

coherence function of the two channels at each 

frequency is calculated by equation (6): 

(6)        
|      |

 

            
  

The value obtained from the above function is in the 

range of zero to one, which shows the coherence 

frequency of two signals related to two channels. 

 

2.6. Cellular Neural Network  

The proposed model utilizes a CNN due to its 

ability to capture both local and global interactions 

between cells, which aligns with the functioning of 

the brain. Since different brain areas are 

interconnected, the CNN is employed to calculate 

the connections within each area. To determine the 

connections between each area and other areas, the 

coherence function is utilized. This function 

quantifies the level of connectivity between 

different brain regions. In the proposed research, 17 

channels were employed to record the brain signals, 

which consequently leads to the consideration of 17 

areas in the model. Each area consists of a CNN 

network with dimensions of 4x4. Figure (2) visually 

depicts 16 cells within a single area. By using the 

CNN model and considering the connectivity and 

interactions between cells and areas, the proposed 

research aims to provide insights into the brain's 

functioning and the differences in connectivity 

patterns between individuals with hyperactivity and 

normal individuals. 
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Figure 2.The structure of the cells in an area 

 

Each of the squares in image 2 represents a 

cell       . i shows the row of cells and j shows the 

column of the grid of cells. All cells and areas are 

connected to each other. The input is applied to each 

of the CNNs, then the weights and states of the cells 

are calculated according to the equations described 

below. Here, the neighborhood r=1, for        in a 

CNN is equal to equation (7): 

               |    |   | |   |}    
      

(7) 

 

so that r is a positive integer. The neighborhood 

system defined above is always displaying a set of 

symmetric properties for all         and        in a 

CNN. Each cell in the cellular neural network 

calculates two values: state and output, where the 

state value shows the state of the cell, and the output 

shows the degree of connection and feedback of 

each cell to other cells. u is the input, x is the state 

and y is the output of the cell. The cell state 

equation is as equation (8) [14]. 

       

  
         ∑                  
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(8) 

 

k and l are the indices of neighboring cells. The 

effects of the outputs are always dependent on the 

interactive parameters             and the input 

control effect is dependent on            and z bias. 

The output of the cell is calculated based on 

equation (9) [14]. 
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3. Discussion and Experimental Results 

The tests were done with MATLAB software 

version R2022a. The proposed method has been 

validated using k-fold where k=10. To show the 

separation of the values of the two groups, SPSS 

statistical analysis software and t-test statistical test 

are used (pvalue<0.05) [13]. The simulation codes 

are posted in this link 

(https://github.com/elham09120868744/ADHD.git) 

for further reading. 

Recordings have been obtained from 19 brain areas. 

Each area of the brain has direct and indirect 

connections and cooperation with other areas. First, 

to model the brain, it is necessary to obtain the 

degree of communication between the regions. As 

all areas of the brain mutually influence each other, 

the proposed model incorporates interconnections 

between each area and the others. Consequently, the 

correlation between the 19 channels needs to be 

calculated, resulting in a total of 19×18 connections. 

To illustrate, only a few examples of these values 

are provided due to the large number of columns in 

the table. In Table (1), the amount of connections 

between each two areas will be obtained. 

 

Table 1. Mean amount of interareal connections for hyperactive 

and normal subjects 

(Pvalue) 
ADHD 

mean+SD 
Normal 

mean+SD 
Electrodes 

0.05 0.012+0.301 0.002+0.658 F7-F8 
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0.05 0.010+0.408 0.062+0.668 F7-T5 

0.05 0.217+0.291 0.247+0.594 F7-Pz 

0.05 0.052+0.345 0.012+0.682 F7-O1 

0.07 0.085+0.365 0.020+0.632 F7-O2 

0.05 0.021+0.217 0.040+0.531 F8-P4 

0.06 0.009+0.315 0.09+0.521 F8-T4 

0.05 0.020+0.781 0.008+0.478 Cz-P3 

0.05 0.036+0.752 0.015+0.332 Cz-O2 

0.05 0.012+0.811 0.010+0.381 C3-O1 

0.05 0.035+0.692 0.01+0.475 C3-T5 

0.39 0.033+0.522 0.021+0.500 P4-P3 

0.42 0.08+0.319 0.11+0.344 O1-O2 

As depicted in Table (1), there are notable 

differences in the communication patterns between 

brain areas in normal individuals and those with 

hyperactivity (the connection values between 

normal individuals brain areas and ADHD are 

different). The results indicate that in normal 

individuals, there is a higher level of connectivity 

between the frontal areas and other regions, whereas 

ADHD exhibit reduced connectivity in this regard. 

Furthermore, it is evident that the central area of the 

brain in hyperactive individuals demonstrates 

increased connectivity with other regions compared 

to normal individuals, where such connections are 

relatively fewer. In general, the connectivity 

between brain areas appears to be less extensive in 

hyperactive individuals compared to normal 

individuals. The remaining connections in other 

normal areas were reported without significant 

differentiation (pvalue < 0.05). Given the disparity 

in connectivity patterns between brain areas in 

ADHDs and normal individuals, it can be inferred 

that the overall functioning of these two groups also 

differs from each other. 

In the proposed model, each brain area's 

performance is represented by a network of CNNs. 

These networks consist of 19 cells, with each cell 

corresponding to an electrode. States and outputs 

(weights) of each cellular neural network are used to 

show the differences in intra-area connections 

between the brain areas of the two groups. These 

differences will be compared in alpha, beta and 

gamma bands. Table 2 displays the average weights 

generated by the CNN network for each brain area, 

along with the quantity of intra-area connections in 

various frequency bands. The significant differences 

between the two groups are denoted by +, ×, and * 

symbols based on t-test. The table also includes the 

mean (M) and standard deviation (SD) values. 

Based on Table 2, noticeable differences are 

observed in the connectivity of cells within the 

frontal areas in both the alpha and beta frequency 

bands. Similarly, significant differences are 

observed in the central areas specifically in the 

alpha band. These findings suggest variations in the 

cellular connections within these regions across the 

two groups. Table 3 shows those states that have 

significant differences in each of the signal 

recording areas. 

 

 

Table 2. The average weights of each area produced by a network of CNNs 

Band 
+   

α Band 
×

 γ Band
 *

β  

P value 
ADHD 

SD+M 
Normal 

SD+M 
P value 

ADHD 
SD+M 

Normal 
SD+M 

P value 
ADHD 

SD+M 
Normal 

SD+M 
Electrodes 

0.21 
0.851 ± 

0.13 
0.844 ± 

0.12 
0.00 

0.724 ± 
0.21 

0.594 ± 
0.10 

0.00 
0.608 ± 
0.121 

0.498 ± 0.03 Fp1*× 

0.45 
0.901 ± 

0.05 
0.903 ± 

0.08 
0.54 

0.500 ± 
0.11 

0.589 ± 
0.12 

0.00 
0.978 ± 

0.02 
0.531 ± 
0.033 

Fp2* 

0.30 
0.525 ± 

0.18 
0.566 ± 

0.05 
0.00 

0.721 ± 
0.09 

0.903 ± 
0.10 

0.00 
0.530 ± 

0.34 
0.773 ± 0.03 F7*× 
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0.21 
0.783 ± 

0.17 
0.752 ± 

0.11 
0.00 

0.419 ± 
0.22 

0.817 ± 
0.14 

0.00 
0.736 ± 
0.044 

0.925 ± 
0.040 

F3*× 

0.30 
0.625 ± 

0.08 

0.636 ± 

0.07 
0.00 

0.701 ± 

0.11 

0.813 ± 

0.09 
0.00 

0.541 ± 

0.04 
0.674 ± 0.06 F4*× 

0.31 
0.799 ± 

0.12 
0.705 ± 

0.32 
0.27 

0.361 ± 
0.05 

0.394 ± 
0.11 

0.70 
0.852 ± 

0.14 
0.952 ± 0.04 Fz 

0.21 
0.906 ± 

0.13 
0.903 ± 

0.12 
0.36 

0.605 ± 
0.12 

0.681 ± 
0.30 

0.41 
0.685 ± 

0.26 
0.693 ± 0.16 F8 

0.52 
0.318 ± 

0.23 
0.337 ± 

0.32 
0.24 

0.589 ± 
0.22 

0.512 ± 
0.11 

0.32 
0.6891 ± 

0.09 
0.693 ± 0.16 T3 

0.51 
0.800 ± 

0.21 
0.841± 
0.29 

0.35 
0.429 ± 

0.12 
0.489 ± 

0.01 
0.00 

0.301 ± 
0.12 

0.704 ± 0.16 C3 

0.15 
0.371 ± 

0.09 
0.394 ± 

0.11 
0.52 

0.900 ± 
0.11 

0.911 ± 
0.12 

0.00 
0.521 ± 

0.08 
0.804 ± 0.06 Cz* 

0.61 
0.721 ± 

0.09 
0.748 ± 

0.11 
0.38 

0.791 ± 
0.11 

0.715 ± 
0.32 

0.00 
0.655 ± 

0.09 
0.895 ± 0.05 C4* 

0.44 
0.831 ± 

0.12 
0.840± 
0.01 

0.42 
0.6210 ± 

0.19 
0.643 ± 

0.11 
0.09 

0.794 ± 
0.01 

0.804 ± 0.21 T4 

0.32 
0.926 ± 

0.15 
0.966 ± 

0.05 
0.38 

0.6891 ± 
0.09 

0.693 ± 
0.16 

0.12 
0.691 ± 

0.21 
0.612 ± 0.21 T5 

0.19 
0.751 ± 

0.21 
0.752 ± 

0.12 
0.00 

0.755 ± 
0.09 

0.795 ± 
0.05 

0.00 
0.444 ± 

0.32 
0.734 ± 0.15 P3*× 

0.15 
0.605 ± 

0.12 
0.641 ± 

0.32 
0.00 

0.521 ± 
0.11 

0.804 ± 
0.06 

0.14 
0.708 ± 

0.02 
0.715 ± 0.32 P4× 

0.19 
0.851 ± 

0.11 
0.852 ± 

0.15 
0.00 

0.855 ± 
0.08 

0.695 ± 
0.03 

0.00 
0.444 ± 

0.32 
0.414 ± 0.15 Pz× 

0.28 
0.583 ± 

0.22 
0.543 ± 

0.13 
0.36 

0.702 ± 
0.12 

0.745 ± 
0.32 

0.31 
0.620 ± 

0.09 
0.651 ± 0.11 T6 

0.31 
0.348 ± 

0.12 
0.337 ± 

0.03 
0.52 

0.645 ± 
0.28 

0.643 ± 
0.16 

0.13 
0.911 ± 

0.03 
0.907 ± 0.08 O1 

0.25 
0.829 ± 

0.11 
0.889 ± 

0.01 
0.25 

0.321 ± 
0.09 

0.344 ± 
0.12 

0.40 
0.721 ± 

0.15 
0.745 ± 0.11 O2 

Table 3. The states that have significant differences in each of areas 

Band α Band γ Band
 

β Electrodes 

S15,1 All 32 states All 32 states Fp1 

No states S7,2, S9,2 S1,1,S2,1,S3,1,S4,1, S5,1, 
S6,1, S7,1, S9,1, S10,1, 

S11,1, S13,1, S14,1, S15,1, 
S16,1, S1,2, S2,2, S3,2, S4,2, 
S5,2, S6,2, S7,2, S9,2, S10,2, 
S11,2, S13,2, S14,2, S15,2, 

S16,2 

Fp2 

S6,2 S2,1, S3,1, S4,1, S5,1, S6,1, 
S7,1, S9,1, S10,1, S11,1, 
S13,1, S14,1, S16,1, S1,2, 

S2,2, S3,2, S4,2, S5,2, S6,2, 
S7,2, S9,2, S10,2, S11,2, 

S13,2, S14,2, S15,2 

S1,1, S1,2, S2,2, S5,1, S6,1, 
S7,1, S10,1, S11,1, S15,1, 

S1,2, S5,2, S6,2, S7,2, S10,2, 
S11,2, S15,2 

F7 

S11,1, S12,1 S5,1, S6,1, S7,1, S8,1, S10,1, 
S11,1, S12,1, S14,1, S15,1, 

S1,2, S6,2, S7,2, S8,2, S10,2, 
S11,2, S12,2, S14,2, S15,2 

S2,1, S3,1, S4,1, S5,1, S6,1, 
S7,1, S9,1, S10,1, S11,1, 
S13,1, S14,1, S16,1, S1,2, 

S2,2, S3,2, S4,2, S5,2, S6,2, 
S7,2, S9,2, S10,2, S11,2, 

S13,2, S14,2, S15,2 

F3 

No states S1,1, S1,2, S2,2, S5,1, S6,1, 
S7,1, S10,1, S11,1, S15,1, 

S1,2, S5,2, S6,2, S7,2, S10,2, 
S11,2, S15,2 

S1,1,S2,1,S3,1,S4,1, S5,1, 
S6,1, S7,1, S9,1, S10,1, 

S11,1, S13,1, S14,1, S15,1, 
S16,1, S1,2, S2,2, S3,2, S4,2, 
S5,2, S6,2, S7,2, S9,2, S10,2, 
S11,2, S13,2, S14,2, S15,2, 

F4 
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S16,2 

S6,1 S3,1,S4,1, S5,1, S6,1, S7,1 , S3,2, S4,2, S5,2, S6,2, S7,2 Fz 

S6,2 S15,1, S1,2, S6,2 S10,2, S11,2 F8 

S7,2 S10,2, S11,2 S7,2, S9,2, S10,2 T3 

, S6,2 S8,1, S10,1 S5,1, S6,1, S7,1, S8,1, S10,1, 
S11,1, S12,1, S14,1, S15,1, 

S1,2, S6,2, S7,2, S8,2, S10,2, 
S11,2, S12,2, S14,2, S15,2 

C3 

No states S11,1, S2,2 S2,1, S3,1, S4,1, S5,1, S6,1, 

S7,1, S9,1, S10,1, S11,1, 
S13,1, S14,1, S16,1, S1,2, 

S2,2, S3,2, S4,2, S5,2, S6,2, 
S7,2, S9,2, S10,2 

Cz 

S8,2 S12,1, S13,1, S1,2 All States C4 

No states S11,1, S13,1 S5,2, S8,2 T4 

S7,1, S9,1 No states S9,2, S10,2, S11,2 T5 

S5,2, S8,2 S3,1, S4,1, S5,1, S8,1, S9,1, 
S10,1, S11,1, S2,2, S3,2, 

S4,2, S5,2, S8,2, S9,2, S10,2, 
S11,2, S13,2, S14,2, S16,2 

1,1, S2,1, S6,1, S7,1, S8,1, 
S9,1, S11,1, S12,1, S13,1, 

S1,2, S2,2, S6,2, S7,2, S8,2, 
S9,2, S11,2, S12,2, S13,2 

P3 

S2,2, S3,2, S4,2, S5,2 S2,1, S3,1, S4,1, S5,1, S6,1, 
S7,1, S9,1, S10,1, S11,1, 

S13,1, S14,1, S16,1, S1,2, 
S2,2, S3,2, S4,2, S5,2, S6,2, 

S7,2, S9,2, S10,2, S11,2, 
S13,2, S14,2, S15,2 

S11,1, S13,1 P4 

S9,1 S1,1,S2,1,S3,1,S4,1, S5,1, 
S6,1, S7,1, S9,1, S10,1, 

S11,1, S13,1, S14,1, S15,1, 
S16,1, S1,2, S2,2, S3,2, S4,2, 

S5,2, S6,2, S7,2, S9,2, S10,2, 
S11,2, S13,2, S14,2, S15,2, 

S16,2 

S1,2, S2,2 Pz 

No states S7,2, S8,2 S11,1, S12,1 T6 

No states S14,2, S15,2 S7,2, S10,2, S11,2 O1 

S11,2 S7,2, S8,2, S10,2 S8,2, S10,2 O2 

 

The alpha band typically manifests when the eyes 

are closed and the brain is in a relaxed state. The 

individuals involved in this research were engaged 

in character recognition and identification tasks 

during the signal recording, therefore, the alpha 

band does not appear prominently in the results of 

these individuals. Moreover, Table 2 and 3 

demonstrate no noticeable variations across 

different areas in the alpha band. On the other hand, 

the gamma band intensifies during alertness and 

cognitive processing. Based on the alertness levels 

of the subjects under examination, significant 

differences (P value < 0.05) can be observed in the 

Fp1, F7, F3, and Fp2 channels. Additionally, 

significant differences were observed in the central 

areas, specifically the C3, Cz, and C4 channels. In 

the P3 electrode, distinct differences were also 

visible in the terminal part. However, no differences 

were observed in the T and occipital areas. The beta 

band is associated with wakefulness and active 

mental states. Accordingly, evident differences can 

be observed in the Fp1, F7, F3, P4, and P3 channels, 

as indicated in Table 2 and 3. 

Based on the experimental results, it can be 

concluded that hyperactive individuals exhibit not 

only differences in inter-areal communication, 

encompassing the central, frontal, and parietal areas, 

but also noticeable differences in intra-areal 

communication involving the electrodes within 

these areas. 

To compare the accuracy of the values obtained 

from the proposed model and validate its 

effectiveness, the values were evaluated using 

Convolutional Neural Network [24], Recurrent 

Neural Network (RNN), and SVM [25] methods. 
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The CNN used in the proposed method is a 3D, with 

6 hidden layers. It applies a convolutional layer with 

a 4x2x20 filter bank to the input, and in the pooling 

layer, the filter bank size is 2x2x20, resulting in an 

output size of 319x7x20. The values obtained from 

these methods, specifically focusing on the β band, 

were used to separate the two groups: ADHD and 

normal. The performance of each method is 

presented in Table 4. To mitigate the risk of 

overfitting, the methods were trained and evaluated 

using 10-fold cross-validation. 

 

 Table 4. Evaluation of the performance of three methods based 

on the obtained values from proposed model 

Criteria 
Convolutional 

Neural Network 
RNN SVM 

Accuracy 95.85 92.8 81.2 

Precision 93.8 91.9 86.9 

Recall 94.9 93.05 83.4 

 

Indeed, the results indicate that the values obtained 

from the proposed model are accurate and capable 

of effectively separating the two groups. Table 4 

clearly demonstrates that the Convolutional Neural 

Network (CNN) method achieves higher accuracy in 

classification compared to the other methods. This 

suggests that the CNN model is more reliable and 

proficient in accurately categorizing the individuals 

into their respective groups. 

 

4. Conclusion 

Hyperactivity disorder is a behavioral disorder 

characterized by an individual's inability to pay 

attention and maintain focus on a subject. Research 

has provided evidence of differences in brain 

structure and electroencephalographic (EEG) signals 

among individuals with hyperactivity disorder. In 

this article, an intelligent and efficient model was 

employed to identify distinct areas associated with 

hyperactivity. 

The models that have been presented so far, based 

on the brain connections of individuals with ADHD, 

have been primarily statistical in nature. However, 

this article introduces an innovative approach by 

employing an intelligent model to analyze the brain 

connections of both ADHD and normal individuals. 

Unlike previous studies that focused solely on EEG 

and its features, this article takes into account the 

brain connections of both groups. The results 

demonstrate significant differences in brain 

connections between the two groups. Leveraging a 

convolutional neural network, the proposed model 

achieved high accuracy in distinguishing between 

individuals with ADHD and those without. 

The proposed model estimated the intra-areal 

connections of the brain in hyperactive individuals 

by utilizing the spectral coherence function between 

different channels. Subsequently, the intra-areal 

connections were obtained using a CNN operating 

in the beta, alpha, and gamma frequency bands. 

Based on the obtained results, it can be concluded 

that individuals with hyperactivity disorder exhibit 

not only differences in inter-areal communication, 

encompassing the central, frontal, and parietal areas, 

but also significant differences in intra-areal 

communication within these areas, particularly in 

the beta and gamma frequency bands during states 

of processing and alertness. 

The results confirmed the validity of the values 

obtained from the proposed model. Moreover, these 

values demonstrated a high accuracy in effectively 

separating the ADHD and normal groups. This 

suggests that the proposed model and the derived 

values have significant potential as a reliable tool 

for accurately distinguishing between individuals 

with ADHD and those without it. 
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