SOME RESULTS ON IDEALS AND --DERIVATION IN BL-ALGEBRAS

MOHAMMAD HOSSEIN NASR ESFAHANI, FARHAD
KHAKSAR HAGHANI* AND SHAHRAM HEIDARIAN

Abstract

In this paper, by considering the notion of ideals in $B L$-algebras, we introduce some special ideals which are related to a subset of a $B L$-algebra and derive some new relations and results about them. We also define the concepts of \odot-derivation for $B L$-algebras and obtain some related results. Finally, we investigate the connection between these functions and $B L$-algebras.

1. InTRODUCTION

$B L$-algebras, introduced in 1998 by Hájek, serve as an algebraic framework for basic logic, specifically the logic of continuous t-norms [1]. Due to the fact that fuzzy logic has made significant progress in most branches of science and engineering, most researchers prioritized the study of mathematical fuzzy logic in their research (such as $[2,3,4])$. Therefore, in this context, Hájek introduced $B L$-algebras based on basic fuzzy logic. Notably, they encompass both the Łindenbaum algebra of equivalent formulas and the algebraic counterpart of propositional basic logic [1]. On the other hand, $M V$-algebras, initially proposed by C. C. Chang for proving the completeness theorem of Łukasiewicz logic, represents a special class of $B L$-algebras [5]. While all $M V$-algebras can be classified as $B L$-algebras, the converse is not always true. However, Höhle demonstrated that this holds when the double negation law is satisfied, i.e., for every $x \in L$, we have $x=x^{--}$[6]. Consequently, a $B L$-algebra can be perceived as

[^0]an algebraic structure such that in general, the recent equality is not hold in it.

In algebraic structures, filters and ideals are essential and practical tools. In $M V$-algebras, ideals play a fundamental role, whereas in $B L$ algebras, filters assume this crucial role.

Despite the vast majority of research on algebraic structures, particularly on $B L$-algebras, most of studies have primarily focused on filters. As a result, the investigation of ideals in $B L$ algebras have received comparatively less attention. C. Lele et al. introduced the notion of ideals in $B L$-algebras and emphasized that it is due to the lack of operation in the rule of double negation and a suitable operation \oplus in $B L$-algebras, ideals and filters do not exhibit duality [7]. A. Paad expanded on the concepts of integral ideals and radical ideals in $B L$-algebras, leading to novel findings in this domain $[8,9]$. Some authors obtained results from this point of view by using the concept of ideals (such as $[10,7,11]$).

In this paper, our focus lies on the concept of ideals in $B L$-algebras. We introduce some special ideals associated with subsets of a $B L$-algebra L and derive new relations and results concerning these ideals. Some authors introduced the concept of φ-derivations in $B L$-algebras [12, 13]. We define the notion of \odot-derivations for $B L$ algebras, investigating their properties and implications. Furthermore, we delve into the relationship between these functions within the context of $B L$-algebras.

To order to provide a comprehensive understanding, this paper is structured as follows: In Section 2, we summarize the basic definitions and essential concepts. In Section 3, we introduce the special ideals in $B L$-algebras and establish theorems and relations about them. Section 4 is dedicated to defining the concept of \odot-derivatives in $B L$-algebras and their properties.

2. Preliminaries

In this section, we will review some key definitions and properties of $B L$-algebras that will be utilized throughout the paper.

Definition 2.1. [1] A $B L$-algebra is an algebra $L=(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ with four binary operations $\wedge, \vee, \odot, \rightarrow$ and two constants 0,1 such that:
$B L_{1}: L=(L, \wedge, \vee, 0,1)$ is a bounded lattice;
$B L_{2}: L=(L, \odot, 1)$ is a commutative monoid;
$B L_{3}: \odot$ and \rightarrow form a adjoint pair, i.e., $r \odot t \leq$
$s \Longleftrightarrow r \leq t \rightarrow s$, for all $r, s, t \in L$;
$B L_{4}: r \wedge s=r \odot(r \rightarrow s)$, for all $r, s \in L$;
$B L_{5}:(r \rightarrow s) \vee(s \rightarrow r)=1$.
If $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L$-algebra, for every $t \in L$ and a natural number n, we define $t^{-}=t \rightarrow 0$ and $t^{n}=t^{n-1} \odot t$, for $n \in \mathbb{N}, t^{0}=1$.

The following properties hold in every $B L$-algebras.
Proposition 2.1. [14, 1, 15] Let L be a $B L$ algebra. For all $r, s, t \in L$, and $n \in \mathbb{N}$, the following statements hold:
(1) $r \odot(r \rightarrow s) \leq s$;
(2) $r \odot s \leq r \wedge s \leq r, s$;
(3) $r \leq s$ if and only if $r \rightarrow s=1$;
(4) $1 \rightarrow r=r, r \rightarrow r=1, r \leq s \rightarrow r, r \rightarrow$ $1=1,0 \rightarrow r=1$;
(5) $r \odot r^{-}=0$;
(6) $r \leq r^{--}, 1^{-}=0,0^{-}=1, r^{---}=r^{-}$;
(7) $r \rightarrow(s \rightarrow t)=s \rightarrow(r \rightarrow t)=(r \odot s) \rightarrow t$;
(8) If $r \leq s$, then $s \rightarrow t \leq r \rightarrow t$ and $t \rightarrow r \leq$ $t \rightarrow s$
(9) $r \leq s$ implies $s^{-} \leq r^{-}$;
(10) $(r \odot s)^{--}=r^{--} \odot s^{--},(r \wedge s)^{--}=r^{--}$ $\wedge s^{--},(r \vee s)^{--}=r^{--} \vee s^{--}$, $(r \rightarrow s)^{--}=r^{--} \rightarrow s^{--}$;
(11) $r \odot(s \wedge t)=(r \odot s) \wedge(r \odot t), r \odot(s \vee t)=$ $(r \odot s) \vee(r \odot t)$
(12) $(r \wedge s)^{-}=r^{-} \vee s^{-}$and $(r \vee s)^{-}=r^{-} \wedge s^{-}$.

Based on references $[14,6], B L$-algebras can be characterized as distributive lattices. In a distributive lattice (L, \leq, \wedge, \vee), every element $r \in L$ is associated with an element $r^{*} \in L$ such that for any $s \in L$, the following conditions hold: $\left(r \wedge r^{*}\right) \vee$ $s=s$ and $\left(r \vee r^{*}\right) \wedge s=s$. Such a distributive lattice with these properties is known as a Boolean algebra. The element r^{*} is referred to as the lattice complement of r. Moreover, the set of all complemented elements in the corresponding distributive lattice associated with the $B L$-algebra L forms a Boolean algebra, denoted by $B(L)$.
Theorem 2.1. [14, 1] For every $r, s \in L$, the following statements are equivalent:
(i) $r \in B(L)$;
(ii) $r \odot r=r$ and $r=r^{--}$;
(iii) $r \odot r=r$ and $r^{-} \rightarrow r=r$;
(iv) $r \vee r^{-}=1$;
(v) $(r \rightarrow s) \rightarrow r=r$;
(vi) $r \wedge s=r \odot s$;

Definition 2.2. [7] A subset I of $B L$-algebra L is called ideal, if it satisfies:
$I_{1}:$ If $r, s \in I$, then $r \oslash s=r^{-} \rightarrow s \in I$;
I_{2} : If $r \in L, s \in I$ and $r \leq s$, then $r \in I$.
From [7], $\{0\}$ is the simplest example of ideals, and for every $r \in L, r \in I$ if and only if $r^{--} \in I$.

A proper ideal I is called the prime ideal of L, if $(r \rightarrow s)^{-} \in I$ or $(s \rightarrow r)^{-} \in I$, for every $r, s \in L$. An ideal I of L is called maximal, if it is proper and no proper ideal of L strictly contains I, i.e., for every ideal $J \neq I$, if $I \subseteq J$, then $J=L$ [7].
Proposition 2.2. [7] A proper ideal I of a BLalgebra L is a prime ideal if and only if for every $r, s \in L, r \wedge s \in I$ implies that $r \in I$ or $s \in I$.
Theorem 2.2. [7] A set I containing 0 of a $B L$ algebra L is an ideal if and only if for every $r, s \in$ $L, r^{-} \odot s \in I$ and $r \in I$ imply $s \in I$.
Definition 2.3. [1] Let L_{1} and L_{2} be two $B L$ algebras. A function $\lambda: L_{1} \rightarrow L_{2}$ is called a $B L$-homomorphism, if for all $r, s \in L_{1}$:

$$
\begin{aligned}
& H_{1}: \lambda\left(0_{L_{1}}\right)=0_{L_{2}} \\
& H_{2}: \lambda(r \odot s)=\lambda(r) \odot \lambda(s) \\
& H_{3}: \lambda(r \rightarrow s)=\lambda(r) \rightarrow \lambda(s)
\end{aligned}
$$

Remark 2.1. From [6], if $\lambda: L_{1} \rightarrow L_{2}$ is a $B L$ -
homomorphism, then for every $r, s \in L_{1}$ we have:

$$
\begin{aligned}
& h_{1}: \lambda(r \wedge s)=\lambda(r) \wedge \lambda(s) \\
& h_{2}: \lambda(r \vee s)=\lambda(r) \vee \lambda(s) \\
& h_{3}: \lambda\left(r^{-}\right)=(\lambda(r))^{-} \\
& h_{4}: \text { If } r \leq s, \text { then } \lambda(r) \leq \lambda(s) \\
& h_{5}: \lambda(r \oslash s)=\lambda(r) \oslash \lambda(s)
\end{aligned}
$$

If $\lambda: L_{1} \rightarrow L_{2}$ is a $B L$-homomorphism, then the kernel of λ is defined by, ker $\lambda=\left\{r \in L_{1} \mid \lambda(r)=\right.$ $0\}$.
Theorem 2.3. [7] Let I be an ideal of BL-algebra L. Define the relation \sim_{I} on L by $r \sim_{I} s \Leftrightarrow r^{-} \odot$ $s \in I$ and $s^{-} \odot r \in I$. Then \sim_{I} is a congruence on L and $\frac{L}{I}=\left\{\left.\frac{r}{I} \right\rvert\, r \in L\right\}$, where $\frac{r}{I}=\left\{s \in L \mid r \sim_{I}\right.$ s\}. Moreover, $\frac{L}{I}$ is a BL-algebra.

For every $\frac{r}{I} \in \frac{L}{I},\left(\frac{r}{I}\right)^{--}=\frac{r}{I}$. This means that the quotient $B L$-algebra $\frac{L}{I}$ which is constructed by any ideal is an $M V$-algebra [10, Proposition 4.3].

Remark 2.2. [7] For every r, s in BL-algebra L, $\left(\frac{r}{I}\right)^{-}=\frac{r^{-}}{I},\left(\frac{r}{I}\right) \oslash\left(\frac{s}{I}\right)=\frac{r \oslash s}{I}$ and $\frac{r}{I}=\frac{s}{I} \Leftrightarrow$ $\left(r^{-} \odot s\right),\left(s^{-} \odot r\right) \in I$.

We observe that, $\frac{r}{I}=\frac{0}{I} \Leftrightarrow r \in I$ and $\frac{r}{I}=$ $\frac{1}{I} \Leftrightarrow r^{-} \in I$.
Definition 2.4. [1] Let L be a $B L$-algebras. Then, a function $f: L \rightarrow L$ is called isotone, if $r \leq s$ implies that $f(r) \leq f(s)$, for all $r, s \in L$.

3. Special Ideals on $B L$-algebras

In this section, by considering a subset of a $B L$-algebra L, we introduce some special ideals and obtain some new relations between them.

Definition 3.1. The set $J(X)=\{a \in L \mid a \rightarrow$ $x=1$, for all $x \in X\}$ is called the adjoint of X, where X is a subset of $B L$-algebra L.

Example 3.1. Let $L=\{0, a, b, 1\}$ with $0<a<$ $b<1$. Define " \odot " and" \rightarrow " as follows:

\odot	0	a	b	1											
0	0	0	0	0		\rightarrow	0	a	b						
	1	1	1	1	1										
a	0	0	a	a		a	a	1	1						
1															
b	0	a	b	b		b	0	a	1						
1															
1	0	a	b	1						\quad	1	0	a	b	1
:---	:---	:---	:---	:---	:---										

It is easy to see that $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L$ algebra. Let $X=\{0, a, b\}, Y=\{b, 1\}, Z=\{b\}$ be three subsets of L. So we conclude that $J(X)=$ $\{0\}, J(Y)=\{0, a, b\}$ and $J(Z)=\{0, a, b\}$.
Proposition 3.1. Let X be a subset of a $B L$ algebra L. Then $J(X)$ is an ideal of L.

Proof. Since $0 \rightarrow r=1$, for all $r \in X, 0 \in$ $J(X)$ and $J(X) \neq \phi$. Let $s \in L, t \in J(X)$ and $s \leq t$. Then $t \rightarrow r=1$, for all $r \in X$. By Proposition 2.1(8), can write $t \rightarrow r \leq s \rightarrow r$, for all $r \in X$. This means that $1 \leq s \rightarrow r$ and $s \rightarrow$ $r=1$, i.e., $s \in J(X)$. Now suppose $s, t \in J(X)$. We claim that $s \oslash t \in J(X)$. In other words, $s \oslash t \rightarrow r=1$. Suppose it is not, i.e., $s \oslash t \rightarrow r \neq 1$, then $s \oslash t>r$. Therefore $r<s^{-} \rightarrow t$. Then
$r \odot s^{-}<t$. By Proposition 2.1(8), we conclude $t \rightarrow r<r \odot s^{-} \rightarrow r$. But by assumption $t \in J(X)$, then $t \rightarrow r=1$. This means that $1<r \odot s^{-} \rightarrow r$ and this is a contradiction. Therefore $J(X)$ is an ideal.

Theorem 3.1. Let L be a $B L$-algebra and $X, Y \subseteq$ L. Then:
(i) If $X \subseteq Y$, then $J(Y) \subseteq J(X)$;
(ii) $J(X \cup Y)=J(X) \cap J(Y)$;
(iii) $t \in J(X)$ if and only if $t^{n} \rightarrow x=1$, for every $x \in X$ and $n \in \mathbb{N}$.
Proof. (i) Let $a \in J(Y)$. Then $a \rightarrow y=1$, for every $y \in Y$. We suppose that $t \in X$. Since $X \subseteq Y, t \in Y$, i.e., $a \rightarrow t=1$, thus, $a \in J(X)$.
(ii) $\mathrm{By}($ i $), J(X \cup Y) \subseteq J(X)$ and $J(X \cup Y) \subseteq$ $J(Y)$. Therefore $J(X \cup Y) \subseteq J(X) \cap J(Y)$. Now, if t is an element of the second side, then $t \rightarrow x=1$ and $t \rightarrow y=1$ for every $x \in X$ and $y \in Y$. We get $t \rightarrow c=1$ for every $c \in X \cup Y$.
(iii) Let $t \in J(X)$. Then $t \rightarrow x=1$, for every $x \in X$. From Proposition 2.1(10), $t^{n} \rightarrow x=$ $\left(t^{n-1} \odot t\right) \rightarrow x=t^{n-1} \rightarrow(t \rightarrow x)$. Therefore $t^{n} \rightarrow x=t^{n-1} \rightarrow 1=1$. Conversely, if $t^{n} \rightarrow x=1$, for every $n \in \mathbb{N}$, then, $t \rightarrow x=1$.

We define the set $J\left(X_{a}\right)$ by $J\left(X_{a}\right)=\{b \in$ $\left.L \mid(b \rightarrow a)^{-} \in J(X)\right\}$, for every subset X and element a in $B L$-algebra L. It is clear that $0, a \in$ $J\left(X_{a}\right)$. In Example 3.1, $J\left(X_{a}\right)=\{0, a\}, J\left(Y_{a}\right)=$ $\{0, a, b, 1\}$.
Proposition 3.2. Let L be a BL-algebra and $X \subseteq L$. Then $J\left(X_{a}\right)$ is an ideal of L.

Proof. $0 \in J\left(X_{a}\right)$. Let $c \in J\left(X_{a}\right)$ and $b \leq c$. Thus $(c \rightarrow a)^{-} \in J(X)$. By Proposition 2.1(9), $c \rightarrow a \leq b \rightarrow a$ and $(b \rightarrow a)^{-} \leq(c \rightarrow a)^{-}$. Since $(c \rightarrow a)^{-} \in J(X)$ and $J(X)$ is an ideal, $(b \rightarrow a)^{-} \in J(X)$, i.e., $b \in J\left(X_{a}\right)$.
Now suppose $b, c \in J\left(X_{a}\right)$. Similar to the proof of Proposition 3.1, it can be shown that $b \oslash c \in$ $J\left(X_{a}\right)$. Then $J\left(X_{a}\right)$ is an ideal.

Theorem 3.2. If L is a BL-algebra and a, b are elements of L, then the following statements hold for every subsets X, Y of L :
(i) $J(X) \subseteq J\left(X_{t}\right)$, for every $t \in X$;
(ii) If $a \leq b$, then $J\left(X_{a}\right) \subseteq J\left(X_{b}\right)$;
(iii) If $J(X) \subseteq J(Y)$, then $J\left(X_{a}\right) \subseteq J\left(Y_{a}\right)$;
(iv) $J\left(X_{a}\right) \cap J\left(Y_{a}\right)=J\left((X \cup Y)_{a}\right), J\left(X_{a}\right) \cup$
$J\left(Y_{a}\right)=J\left((X \cap Y)_{a}\right)$.

Proof. (i) Let $b \in J(X)$. Then by Definition 3.1, $b \rightarrow x=1$ for every $x \in X$. Therefore $b \rightarrow t=1$. We conclude that, $(b \rightarrow t)^{-}=1^{-}=$ $0 \in J(X)$, i.e., $b \in J\left(X_{t}\right)$.
(ii) Let $r \in J\left(X_{a}\right)$. Then, $(r \rightarrow a)^{-} \in J(X)$. Assuming $a \leq b$. Then by Proposition 2.1(8), $r \rightarrow a \leq r \rightarrow b$ for every $r \in X$. Therefore $(r \rightarrow b)^{-} \leq(r \rightarrow a)^{-}$for every $r \in X$. Since $J(X)$ is an ideal, $(r \rightarrow b)^{-} \in J(X)$. This means that $r \in J(X)_{b}$.
(iii) Let $t \in J\left(X_{a}\right)$. Then $(t \rightarrow a)^{-} \in J(X) \subseteq$ $J(Y)$. Thus $(t \rightarrow a)^{-} \in J(Y)$, i.e., $t \in J\left(Y_{a}\right)$.
(iv) We know $J(X \cup Y)=J(X) \cap J(Y) \subseteq J(X), J($ Y). By (iii), $J\left((X \cup Y)_{a}\right) \subseteq J\left(X_{a}\right), J\left(Y_{a}\right)$. Therefore $J\left((X \cup Y)_{a}\right) \subseteq J\left(X_{a}\right) \cap J\left(Y_{a}\right)$. Conversely, let $t \in J\left(X_{a}\right) \cap J\left(Y_{a}\right)$. Then $t \in J\left(X_{a}\right), t \in$ $J\left(Y_{a}\right)$. This means that, $(t \rightarrow a)^{-} \in J(X),(t \rightarrow$ $a)^{-} \in J(Y)$, hence $(t \rightarrow a)^{-} \in J(X) \cap J(Y)$, i.e., $t \in J\left((X \cup Y)_{a}\right)$. In the similar way, it is clear $J\left(X_{a}\right) \cup J\left(Y_{a}\right)=J\left((X \cap Y)_{a}\right)$.

Definition 3.2. Let L be a BL-algebra and $X \subseteq$ L. We define the set $D(X)$ by $D(X)=\{a \in$ $L \mid a^{--} \rightarrow x=1$ for all $\left.x \in X\right\}$ and we call double adjoint X.
Example 3.2. We consider the $B L$-algebra L in [6, Example 3.5]. It is clear that, $0^{--}=0, a^{--}=$ $b^{--}=c^{--}=c, d^{--}=d$ and $e^{--}=f^{--}=1$. Let $X=\{f, e\}$. Then $D(X)=\{0, d\}$ and $D(a)=$ $\{0\}$.

Proposition 3.3. $D(X)$ is an ideal, for every subset X of $B L$-algebra L.

Proof. It is easy to see that $0 \in D(X)$. We assume $r \in L, s \in D(X)$ and $r \leq s$. Then $s^{--} \rightarrow$ $x=1$, for every $x \in X$. By Proposition 2.1(9), $s^{-} \leq r^{-}$. Therefore $r^{--} \leq s^{--}$and $s^{--} \rightarrow$ $x \leq r^{--} \rightarrow x$. We conclude $1 \leq r^{--} \rightarrow x$, i.e., $r^{--} \rightarrow x=1$ and $r \in D(X)$.
Suppose $r, s \in D(X)$. We have to prove $r \oslash s \in$ $D(X)$. Suppose it is not, i.e., $(r \oslash s)^{--} \rightarrow x \neq 1$, for some $x \in X$, then $x<r^{---} \rightarrow s^{--}$. By Proposition 2.1(8), $x<r^{-} \rightarrow s^{--}$and $r^{--} \rightarrow$ $x<r^{--} \rightarrow\left(r^{-} \rightarrow s^{-}\right)$. Since $r \in D(X), r^{--} \rightarrow$ $x=1$. Therefore $1<r^{--} \rightarrow\left(r^{-} \rightarrow s^{-}\right)$and this is a contradiction. Then $r \oslash s \in D(X)$, i.e., $D(X)$ is an ideal.

Theorem 3.3. Let L be a $B L$-algebra and $X, Y \subseteq$ L. Then the following statements hold:
(i) $J(1)=D(1)=L$;
(ii) $D(X) \subseteq J(X)$;
(iii) If $a^{-} \rightarrow a=a$, for all $a \in L$, then $J(X) \subseteq D(X) ;$
(iv) If $X \subseteq Y$, then $D(Y) \subseteq D(X)$.

Proof. (i) We know that, $J(1)=\{a \in L \mid a \rightarrow$ $1=1\}=L$ and $D(1)=\left\{a \in L \mid a^{--} \rightarrow 1=1\right\}=$ L.
(ii) Let $r \in D(X)$. Then by Definition 3.2, $r^{--} \rightarrow$ $x=1$, for all $x \in X$. Since $r \leq r^{--}$, by Proposition 2.1(8), $r^{--} \rightarrow x \leq r \rightarrow x$ and $1 \leq r \rightarrow x$, i.e., $r \rightarrow x=1$. It follows that $r \in J(X)$.
(iii) Let $r \in J(X)$. Then $r \rightarrow x=1$, for all $x \in X$. Since $0 \leq r$, by Proposition 2.1(8), $r^{-} \rightarrow$ $0 \leq r^{-} \rightarrow r$, i.e., $r^{-} \rightarrow 0 \leq r$. Therefore $r^{--} \leq r$ and $r \rightarrow x \leq r^{--} \rightarrow x$, i.e., $1 \leq r^{--} \rightarrow x$. Hence $r^{--} \rightarrow x=1$ and $r \in D(X)$.
(iv) Let $r \in D(Y)$. Then $r^{--} \rightarrow y=1$, for all $y \in Y$. Since $X \subseteq Y$, for every $x \in X$, $r^{--} \rightarrow x=1$, i.e., $r \in D(X)$.
Theorem 3.4. Let X be a subset of a BL-algebra
L. Then:
(i) $D(X)=\bigcap_{x \in X} D(x)$;
(ii) If $r \in D(x)$, then $x \wedge r^{--}=r^{--}$, for every $x \in X$;
(iii) If $f: L \rightarrow L$ is a $B L$-homomorphism, then $f(J(x)) \subseteq J(f(x))$, for all $x \in L$.
Proof. (i) We have:

$$
\begin{aligned}
t \in D(X) & \Leftrightarrow t^{-} \rightarrow x=1, \quad \text { for every } x \in X \\
& \Leftrightarrow t \in D\{x\}, \quad \text { for every } x \in X \\
& \Leftrightarrow t \in \bigcap_{x \in X} D\{x\}
\end{aligned}
$$

(ii) If $r \in D\{x\}$, then $r^{--} \rightarrow x=1$. From $B L_{4}$, we conclude that, $x \wedge r^{--}=r^{--} \wedge x=r^{--} \odot$ $\left(r^{--} \rightarrow x\right)=r^{--} \odot 1=r^{--}$.
(iii) Let $y \in f(J(X))$. Then $y=f(a)$, for some $a \in J(X)$. Since $a \rightarrow x=1, f(a \rightarrow x)=f(a) \rightarrow$ $f(x)=f(1)=1$, i.e., $y \rightarrow f(x)=1$. Therefore $y \in J(f(x))$.
Theorem 3.5. Let L_{1} be a BL-algebra and $X, Y \subseteq$ L. Then $D(X \cup Y)=D(X) \cap D(Y) \subseteq D(X \cap Y)$.

Proof. We know that, $r \in D(X \cup Y)$

```
\(\Leftrightarrow \quad r^{--} \rightarrow z=1\), for every \(z \in X \cup Y\)
\(\Leftrightarrow \quad r^{--} \rightarrow x=r^{--} \rightarrow y=1\), for every \(x \in\)
\(\Leftrightarrow \quad X\) and \(y \in Y\)
\(\Leftrightarrow \quad r \in D(X)\) and \(r \in D(Y)\)
\(\Leftrightarrow \quad r \in D(X) \cap D(Y)\).
```

Since $X \cap Y \subseteq X \cup Y$, by Theorem 3.3(iv), $D(X \cup Y) \subseteq D(X \cap Y)$.
Theorem 3.6. Let L be a $B L$-algebra and $X \subseteq$ L. If I is an ideal of L, then $D\left(\frac{x}{I}\right)=\left\{\left.\frac{r}{I} \right\rvert\,\left(r^{--} \rightarrow\right.\right.$ $\left.x)^{-} \in I, \forall x \in X\right\}$.

Proof. Since $D\left(\frac{x}{I}\right)=\left\{\frac{r}{I} \left\lvert\,\left(\frac{r}{I}\right)^{--} \rightarrow\left(\frac{x}{I}\right)=\right.\right.$ $\frac{1}{I}$, for all $\left.x \in X\right\}, \frac{r^{--}}{I} \rightarrow \frac{x}{I}=\frac{r^{--} \rightarrow x}{I}=\frac{1}{I}$. By Remark 2.2, we conclude that $\left(r^{--} \rightarrow x\right)^{-} \in I$. We set $D(I)=\left\{r \in L \mid r^{--} \in I\right\}$, where I is an ideal of $B L$-algebra L. If we consider the ideal $I=\{0, a, b, c\}$ of $B L$-algebra L in [6, Example 3.5], then we get $D(I)=\{0, a, b, c\}$.

Theorem 3.7. Let I and J be two ideals of $B L$ algebra L. Then the following statements hold:
(i) $D(I) \subseteq I$;
(ii) If $I \subseteq J$, then $D(I) \subseteq D(J)$;
(iii) $D(I \cap J)=D(I) \cap D(J)$;
(iv) $\frac{L}{D(I \cap J)}=\frac{L}{D(I)} \cap \frac{L}{D(J)}$.

Proof. (i) Let $r \in D(I)$. Then $r^{--} \in I$. By Definition 2.2 and the fact that $r \leq r^{--}$, we have $r \in I$.
(ii) Let $r \in D(I)$. Then $r^{--} \in I$. Since $I \subseteq J$, $r^{--} \in J$, i.e., $r \in D(J)$.
(iii) We have,

$$
\begin{aligned}
r \in D(I \cap J) & \Leftrightarrow r^{--} \in I \cap J \\
& \Leftrightarrow r^{--} \in I \text { and } r^{--} \in J \\
& \Leftrightarrow r \in D(I) \text { and } r \in D(J) \\
& \Leftrightarrow r \in D(I) \cap D(J) .
\end{aligned}
$$

(iv) By applying (iv), to quotient $B L$-algebra, we have $\frac{L}{D(I \cap J)}=\frac{L}{D(I) \cap D(J)}$.
Therefore,

$$
\left.\left.\begin{array}{l}
{[r]=\frac{r}{D(I) \cap D(J)} \in \frac{L}{D(I) \cap D(J)}} \\
\begin{array}{l}
\Leftrightarrow[r]=\left\{s \in L \left\lvert\, r \equiv \begin{array}{c}
s \\
D(I) \cap D(J)
\end{array}\right.\right\}
\end{array} \\
\Leftrightarrow[r]=\left\{s \in L \mid\left(r^{-} \odot s\right) \vee\left(s^{-} \odot r\right)\right. \\
\in D(I) \cap D(J)\}
\end{array}\right\} \begin{array}{l}
\Leftrightarrow[r]=\left\{s \in L \mid\left(r^{-} \odot s\right) \vee\left(s^{-} \odot r\right) \in D(I)\right\} \cap \\
\left\{s \in L \mid\left(r^{-} \odot s\right) \vee\left(s^{-} \odot r\right) \in D(J)\right\}
\end{array}\right\}[r] \in \frac{L}{D(I)} \cap \frac{L}{D(J)} .
$$

We recall that, if L_{1} and L_{2} are two $B L$-algebras then, $L_{1} \times L_{2}=\left\{(a, b) \mid a \in L_{1}, b \in L_{2}\right\}$ is a $B L$ algebra [16].

Theorem 3.8. If I and J are ideals of $B L$ algebras L_{1} and L_{2} respectively, then the following statements hold:
(i) $I \times J$ is an ideal of $L_{1} \times L_{2}$;
(ii) $D(I \times J)=D(I) \times D(J)$;
(iii) $\frac{L_{1} \times L_{2}}{D(I \times J)} \simeq \frac{L_{1}}{D(I)} \times \frac{L_{2}}{D(J)}$;
(iv) If $J \subseteq D(I)$, then $D\left(\frac{I}{J}\right)=\frac{D(I)}{J}$.

Proof. (i) It is trivial that $(0,0) \in I \times J$. Now we suppose that $(r, s),(t, z) \in I \times J$. Then $r, t \in I$ and $s, z \in J$. Since I and J are ideals, $r \oslash t \in I$, $s \oslash z \in J$, i.e., $(r \oslash t, s \oslash z) \in I \times J$.
Let $(r, s) \leq(t, z)$ and $(t, z) \in I \times J$. Then $r \leq$ $t, s \leq z, t \in I$ and $z \in J$. This means that, $r \in I$ and $s \in J$, hence $(r, s) \in I \times J$.
(ii) We know that $D(I \times J)=\left\{(r, s) \mid(r, s)^{--} \in\right.$ $\left.I \times J ; r \in L_{1}, s \in L_{2}\right\}$. Therefore,

$$
\begin{aligned}
(r, s)^{--} \in I \times J & \Leftrightarrow\left(r^{--}, s^{--}\right) \in I \times J \\
& \Leftrightarrow r^{--} \in I \text { and } s^{--} \in J \\
& \Leftrightarrow r \in D(I) \text { and } s \in D(J) \\
& \Leftrightarrow(r, s) \in D(I) \times D(J)
\end{aligned}
$$

(iii) We define a mapping $\varphi: L_{1} \times L_{2} \rightarrow \frac{L_{1}}{D(I)} \times \frac{L_{2}}{D(J)}$ by $\varphi(r, s)=([r],[s])$. It is easy to see that φ is an onto $B L$-homomorphism. Moreover,

$$
\begin{aligned}
\operatorname{ker} \varphi & =\{(r, s) \mid \varphi(r, s)=([0],[0])\} \\
& =\{(r, s) \mid([r],[s])=([0],[0])\} \\
& =\{(r, s) \mid[r]=[0],[s]=[0]\} \\
& =\left\{(r, s) \left\lvert\, \frac{r}{D(I)}=[0]\right., \frac{s}{D(J)}=[0]\right\}
\end{aligned}
$$

By Remark 2.2, $\operatorname{ker} \varphi=\{(r, s) \mid r \in D(I), s \in$ $D(J)\}=\{(r, s) \mid(r, s) \in D(I) \times D(J)\}$. By (ii), $\operatorname{ker} \varphi=D(I) \times D(J)=D(I \times J)$.
(iv) Since $J \subseteq D(I) \subseteq I, D\left(\frac{I}{J}\right)=\left\{\left.[r] \in \frac{L_{1}}{J} \right\rvert\,[r]^{--} \in\right.$ $\left.\frac{I}{J}\right\}=\left\{[r] \in \frac{L_{1}}{J} \left\lvert\,\left[r^{--}\right] \in \frac{I}{J}\right.\right\}$. By Definition 2.2, $D\left(\frac{I}{J}\right)=\left\{\left.[r] \in \frac{L_{1}}{J} \right\rvert\, r^{--} \in I\right\}=\left\{\left.[r] \in \frac{L_{1}}{J} \right\rvert\, r \in\right.$ $D(I)\}=\frac{D(I)}{J}$.
Theorem 3.9. Let I be an ideal of BL-algebra of L. Then:
(i) If I is a prime ideal of L, then $D(I)$ is a prime ideal of L.
(ii) If $D(I)$ is a maximal ideal, then I is a maximal ideal of L.
Proof. (i) Let I be a prime ideal of L and $r \wedge s \in D(I)$. Then $(r \wedge s)^{--}=r^{--} \wedge s^{--} \in I$. Since I is a prime ideal, $r^{--} \in I$ or $s^{--} \in I$. This
means that $r \in D(I)$ or $s \in D(I)$. Hence $D(I)$ is a prime ideal of L.
(ii) Let $D(I)$ be a maximal ideal. Since $D(I) \subseteq I$, $D(I)=I$. Thus I is a maximal ideal of L.
Theorem 3.10. Let L_{1} and L_{2} be two BL-algebras, I an ideal of L_{1} and $f: L_{1} \rightarrow L_{2}$ be a $B L$-homomorphism. Then $f(D(I)) \subseteq D(f(I))$.

Proof. Let $y \in f(D(I))$. Then $y=f(r)$ for some $r \in D(I)$. This means that $r^{--} \in I$ and $y^{--}=(f(r))^{--}=f\left(r^{--}\right) \in f(I)$. Therefore $y \in D(f(I))$.
Corollary 3.1. Let L_{1} and L_{2} be two BL-algebra, J an ideal of L_{2} and $f: L_{1} \rightarrow L_{2}$ be a $B L$-homomorphism. Then $D\left(f^{-1}(J)\right)=f^{-1}(D(J))$.

Proof. We know that,

$$
\begin{aligned}
t \in D\left(f^{-1}(J)\right) & \Leftrightarrow t^{--} \in f^{-1}(J) \\
& \Leftrightarrow f\left(t^{--}\right) \in J \\
& \Leftrightarrow(f(t))^{--} \in J \\
& \Leftrightarrow f(t) \in D(J) \\
& \Leftrightarrow t \in f^{-1}(D(J)) .
\end{aligned}
$$

Corollary 3.2. Let I and J be two ideals of $B L$ algebra L and $J \subseteq I$. Then:
(i) $D(I / D(J))=D(I) / D(J) \subseteq D(I / J)$;
(ii) $D(D(I)) \subseteq D(I)$.

Proof. (i) Since $J \subseteq I$, by Theorem 3.7, $D(J) \subseteq$ $D(I) \subseteq I$. Since $D(J) \subseteq J$, by Theorem 3.8, $D(I) / D(J) \subseteq D(I) / J=D(I / J)$.
(ii) By Theorem 3.7, it is trivial.

4. --DERIVATIONS ON $B L$-ALGEBRAS

In this section, we introduced some special ideals and the notion of \odot-derivations on $B L$-algebras and we obtain some new results.

Definition 4.1. Let L be a $B L$-algebra and φ : $L \rightarrow L$ be a non-identity function. φ is a \odot derivation on L if for every $a, b \in L$:
$\varphi(a \odot b)=\left(\varphi(a) \odot b^{--}\right) \vee\left(\varphi\left(a^{-}\right) \odot b\right)$.
Example 4.1. Let $L=\{0, a, b, 1\}$, where $0<$ $a<b<1$. Define " $\odot ", " \rightarrow "$ as follow:

\odot	0	a	b	1					
0	0	0	0	0					
a	0	0	a	a					
b	0	a	b	b		\rightarrow	0	a	b
0	1	1	1	1					
1	0	a	b	1		a	1	1	1
		1	0	a	1	1			
				b	1				

Then $(L, \vee, \wedge, \odot, \rightarrow, 0,1)$ is a $B L$-algebra, we define $\varphi_{1}, \varphi_{2}: L \rightarrow L$:
(i) $\varphi_{1}(0)=\varphi_{1}(1)=0, \varphi_{1}(a)=a, \varphi_{1}(b)=b$;
(ii) $\varphi_{2}(0)=\varphi_{2}(1)=0, \varphi_{2}(a)=b, \varphi_{2}(b)=a$.

It is clear that φ_{1} and φ_{2} are \odot-derivations on L.
Theorem 4.1. Let φ be a \odot-derivation on $B L$ algebra L. Then the following statements hold, for all $a, b \in L$:
(i) $\varphi(0)=0$;
(ii) $a \leq b$ implies $\varphi(a) \leq b^{--}, \varphi\left(a^{-}\right) \leq b^{--}$;
(iii) $\varphi(a) \leq a^{--}, \varphi\left(a^{-}\right) \leq a^{--}$;
(iv) $\varphi(1)=0$ and if $\varphi(a)=1$, then $a^{-}=0$;
(v) $\varphi\left(a^{-}\right) \leq \varphi(a)$;
(vi) $\varphi\left(a^{-}\right) \leq(\varphi(a))^{-}$

Proof. (i) We know $\varphi(0)=\varphi(0 \odot 0)$. By Definition 4.1, we have, $\varphi(0 \odot 0)=(\varphi(0) \odot 0) \vee(\varphi(1) \odot$ $0)=0 \vee 0=0$. Therefore $\varphi(0)=0$.
(ii) Since $a \leq b, a \odot b^{-}=0$. By Definition 4.1, $0=\varphi(0)=\varphi\left(a \odot b^{-}\right)=\left(\varphi(a) \odot b^{---}\right) \vee\left(\varphi\left(a^{-}\right) \odot\right.$ $\left.b^{-}\right)$. Then $\left(\varphi(a) \odot b^{-}\right) \vee\left(\varphi\left(a^{-}\right) \odot b^{-}\right)=0$, i.e, $\varphi(a) \odot b^{-}=0$ and $\varphi\left(a^{-}\right) \odot b^{-}=0$. This means that $\varphi(a) \leq b^{--}$and $\varphi\left(a^{-}\right) \leq b^{--}$.
(iii) By (ii) and taking $a=b$, it is clear.
(iv) By (ii), by taking $a=0, \varphi\left(0^{-}\right) \leq 0^{--}$, hence
$\varphi(1) \leq 0$, i.e, $\varphi(1)=0$. By (iii) and assumption $\varphi(a)=1$, therefore $1 \leq a^{--}$, i.e., $a^{--}=1$. This means that $a^{-}=0$.
(v) By Definition 4.1, $\varphi(a)=\varphi(a \odot 1)=(\varphi(a) \odot$ 1) $\vee\left(\varphi\left(a^{-}\right) \odot 1\right)=\varphi(a) \vee \varphi\left(a^{-}\right)$. Then $\varphi\left(a^{-}\right) \leq$ $\varphi(a)$.
(vi) By (iii), $\varphi(a) \leq a^{--}$, hence $\varphi\left(a^{-}\right) \leq a^{---}$ and $a^{---} \leq(\varphi(a))^{-}$. Therefore $\varphi\left(a^{-}\right) \leq(\varphi(a))^{-}$.
Theorem 4.2. Let φ be a \odot-derivation on $B L$ algebra L. Then the following statements hold for all $a, b \in B(L)$:
(i) $\varphi(a) \odot \varphi(b) \leq \varphi(a \odot b)$;
(ii) $\varphi(a \wedge b)=b \wedge\left(\varphi(a) \vee \varphi\left(a^{-}\right)\right)$.

Proof. (i) By Theorem 4.1(iii), $\varphi(b) \leq b^{--}$, hence $\varphi(a) \odot \varphi(b) \leq \varphi(a) \odot b^{--} \leq(\varphi(a) \odot b) \vee$ $\left(\varphi(a) \odot b^{--}\right)=\varphi(a \odot b)$.
(ii) By Theorem 2.1, $a \wedge b=a \odot b$ and $a^{--}=a$. Then:

$$
\begin{aligned}
\varphi(a \wedge b)=\varphi(a \odot b) & =\left(\varphi\left(a^{-}\right) \odot b\right) \vee\left(\varphi(a) \odot b^{--}\right) \\
& =\left(\varphi\left(a^{-}\right) \wedge b\right) \vee(\varphi(a) \wedge b) \\
& =b \wedge\left(\varphi(a) \vee \varphi\left(a^{-}\right)\right)
\end{aligned}
$$

Theorem 4.3. Let φ be a \odot-derivation on $B L$ algebra L. If $a \odot b=0$, then $\varphi(a) \odot \varphi(b)=0$.

Proof. By Theorem 4.1(iii), $\varphi(a) \leq a^{--}$. Then $\varphi(a) \odot \varphi(b) \leq a^{--} \odot \varphi(b) \leq a^{--} \odot b^{--}=$ $(a \odot b)^{--}=0^{--}=0$, i.e., $\varphi(a) \odot \varphi(b)=0$.

Theorem 4.4. Let φ be a \odot-derivation on $B L$ algebra L. Then:

$$
\varphi\left(a^{-} \wedge b^{-}\right) \leq \varphi(a \vee b), \quad \varphi\left(a^{-} \vee b^{-}\right) \leq \varphi(a \wedge b)
$$

Proof. We know that $\varphi\left(a^{-}\right) \leq \varphi(a)$, then $\varphi(a \wedge b)^{-} \leq \varphi(a \wedge b)$ and $\varphi(a \vee b)^{-} \leq \varphi(a \vee b)$. By Proposition 2.1(14), we have $\varphi\left(a^{-} \vee b^{-}\right) \leq$ $\varphi(a \wedge b)$ and $\varphi\left(a^{-} \wedge b^{-}\right) \leq \varphi(a \vee b)$.

Theorem 4.5. φ is a \odot-derivation on $B L$-algebra L if and only if $\varphi(a \odot b)=\varphi(a) \odot b^{--}$for all $a, b \in L$.

Proof. Let φ be a \odot-derivation. By part (v) of Theorem 4.1, since $\varphi\left(a^{-}\right) \leq \varphi(a), \varphi\left(a^{-}\right) \odot b \leq$ $\varphi(a) \odot b$ and since $b \leq b^{--}$, we have $\varphi\left(a^{-}\right) \odot b \leq$ $\varphi(a) \odot b^{--}$. Therefore $\left(\varphi\left(a^{-}\right) \odot b\right) \vee\left(\varphi(a) \odot b^{--}\right)=$ $\varphi(a) \odot b^{--}$, i.e., $\varphi(a \odot b)=\varphi(a) \odot b^{--}$.
Conversely, now let $\varphi(a \odot b)=\varphi(a) \odot b^{--}$, for all $a, b \in L$. By Theorem 4.1, since $\varphi\left(a^{-}\right) \leq \varphi(a)$, $\varphi\left(a^{-}\right) \odot b \leq \varphi(a) \odot b \leq \varphi(a) \odot b^{--}$. Therefore $\left(\varphi\left(a^{-}\right) \odot b\right) \vee\left(\varphi(a) \odot b^{--}\right)=\varphi(a) \odot b^{--}=\varphi(a \odot b)$. Thus φ is a \odot-derivation.

Theorem 4.6. Let φ be a \odot-derivation on $B L$ algebra L. Then the following statements hold, for all $a, b, c \in L, n \in \mathbb{N}$:
(i) $\varphi\left(a^{n}\right)=\varphi(a) \odot\left(a^{--}\right)^{n-1}$;
(ii) $\varphi^{n}(a \odot b)=\varphi^{n}(a) \odot b^{--}$;
(iii) $\varphi(a \odot b) \odot \varphi\left(c \odot b^{-}\right)=0$.

Proof. (i) The proof is by induction on n. For $n=1$, we have $\varphi(a)=\varphi(a) \odot 1=\varphi(a) \odot\left(a^{--}\right)^{0}$. Now let for $n=k, \varphi\left(a^{k}\right)=\varphi(a) \odot\left(a^{--}\right)^{k-1}$. Putting $n=k+1$. Then $\varphi\left(a^{k+1}\right)=\varphi\left(a^{k} \odot a\right)=$ $\varphi\left(a^{k}\right) \odot a^{--}=\left(\varphi(a) \odot\left(a^{--}\right)^{k-1}\right) \odot a^{--}=\varphi(a) \odot$ $\left(\left(a^{--}\right)^{k-1} \odot a^{--}\right)=\varphi(a) \odot\left(a^{--}\right)^{k}$.
(ii) The proof is by induction on n. For $n=1$, by Theorem 4.7, it is clear. Now, assume $\varphi^{k}(a \odot$ $b)=\varphi^{k}(a) \odot b^{--}$for each positive integer k . Let $n=k+1$. Then $\varphi^{k+1}(a \odot b)=\varphi\left(\varphi^{k}(a \odot b)\right)=$ $\varphi\left(\varphi^{k}(a) \odot b^{--}\right)=\varphi^{k+1}(a) \odot b^{----}=\varphi^{k+1}(a) \odot$ (iii) By Theorem 4.7, $\varphi(a \odot b) \odot \varphi\left(c \odot b^{-}\right)=$ $\left(\varphi(a) \odot b^{--}\right) \odot\left(\varphi(c) \odot b^{---}\right)=\left(\varphi(a) \odot b^{--}\right) \odot$ $\left(\varphi(c) \odot b^{-}\right)=(\varphi(a) \odot \varphi(c)) \odot\left(b^{--} \odot b^{-}\right)=(\varphi(a) \odot$ $\varphi(c)) \odot 0=0$.

Theorem 4.7. Let φ_{1} and φ_{2} be two \odot-derivations on BL-algebra. Then $\varphi_{1} \circ \varphi_{2}$ is $a \odot$-derivation.

Proof. Let φ_{1} and φ_{2} be two \odot-derivations. By Theorem 4.7, $\left(\varphi_{1} \circ \varphi_{2}\right)(a \odot b)=\varphi_{1}\left(\varphi_{2}(a \odot\right.$ $b))=\varphi_{1}\left(\varphi_{2}(a) \odot b^{--}\right)=\varphi_{1}\left(\varphi_{2}(a)\right) \odot b^{----}$, i.e., $\left(\varphi_{1} \circ \varphi_{2}\right)(a \odot b)=\left(\varphi_{1} \circ \varphi_{2}\right)(a) \odot b^{--}$. Therefore $\varphi_{1} \circ \varphi_{2}$ is a \odot-derivation.

Definition 4.2. Let L be a $B L$-algebra and $a \in$ L. We define the function $\varphi_{a}: L \rightarrow L$ by $\varphi_{a}(r)=$ $a \odot r^{--}$, for all $r \in L$.

Theorem 4.8. Let L be a BL-algebra. Then the following statements hold, for all $r, s \in L$:
(i) φ_{a} is $a \odot$-derivation;
(ii) $\varphi_{0}(r)=0, \varphi_{1}(r)=r^{--}$;
(iii) $\varphi_{a \wedge b}(r)=\varphi_{a}(r) \wedge \varphi_{b}(r), \varphi_{a \vee b}(r)=\varphi_{a}(r) \vee$ $\varphi_{b}(r)$;
(iv) $\varphi_{a}(r \wedge s)=\varphi_{a}(r) \wedge \varphi_{a}(s), \varphi_{a}(r \vee s)=$ $\varphi_{a}(r) \vee \varphi_{a}(s)$;
(v) $\varphi_{a}\left(r^{n}\right)=\varphi_{a}(r) \odot\left(r^{--}\right)^{n-1}$;
(vi) $\left(\varphi_{a} \circ \varphi_{b}\right)(r)=\varphi_{\left(\varphi_{a}(b)\right)}(r)$.

Proof. (i) By Definition 4.2, $\varphi_{a}(r \odot s)=a \odot$ $(r \odot s)^{--}$. By Proposition 2.1(11), $\varphi_{a}(r \odot s)=$ $a \odot\left(r^{--} \odot s^{--}\right)=\left(a \odot r^{--}\right) \odot s^{--}=\varphi_{a}(r) \odot s^{--}$.
(ii) By Definition 4.2, $\varphi_{0}(r)=0 \odot r^{--}=0$ and $\varphi_{1}(r)=1 \odot r^{--}=r^{--}$.
(iii) By Definition 4.2, $\varphi_{a \wedge b}(r)=(a \wedge b) \odot r^{--}=$ $r^{--} \odot(a \wedge b)$. By Proposition 2.1(13), $\varphi_{a \wedge b}(r)=$ $\left(r^{--} \odot a\right) \wedge\left(r^{--} \odot b\right)=\left(a \odot r^{--}\right) \wedge\left(b \odot r^{--}\right)=$ $\varphi_{a}(r) \odot \varphi_{b}(r)$. In the similar way, we can prove, $\varphi_{a \vee b}(r)=\varphi_{a}(r) \vee \varphi_{b}(r)$.
(iv) By hypothesis, $\varphi_{a}(r \wedge s)=a \odot(r \wedge s)^{--}$. By Proposition 2.1(11), (13), $\varphi_{a}(r \wedge s)=a \odot\left(r^{--} \wedge\right.$ $\left.s^{--}\right)=\left(a \odot r^{--}\right) \wedge\left(a \odot s^{--}\right)=\varphi_{a}(r) \wedge \varphi_{a}(s)$. It is proved similarly way, $\varphi_{a}(r \vee s)=\varphi_{a}(r) \vee d_{a}(s)$. (v) The proof is by induction on n. For $n=1$, we have $\varphi_{a}(r)=\varphi_{a}(r) \odot 1=\varphi_{a}(r) \odot\left(r^{--}\right)^{0}$. Now suppose $\varphi_{a}\left(r^{k}\right)=\varphi_{a}(r) \odot\left(r^{--}\right)^{k-1}$, for each positive integer k. Let $n=k+1$. Then $\varphi_{a}\left(r^{k+1}\right)=$ $\varphi_{a}\left(r^{k} \odot r\right)=\varphi_{a}\left(r^{k}\right) \odot r^{--}$. Assuming, $\varphi_{a}\left(r^{k+1}\right)=$ $\left(\varphi_{a}(r) \odot\left(r^{--}\right)^{k-1}\right) \odot r^{--}=\varphi_{a}(r) \odot\left(\left(r^{--}\right)^{k-1} \odot\right.$ $\left.r^{--}\right)=\varphi_{a}(r) \odot\left(r^{--}\right)^{k}$.
(vi) We have $\left(\varphi_{a} \circ \varphi_{b}\right)(r)=\varphi_{a}\left(\varphi_{b}(r)\right)$. By Definition 4.2,

$$
\begin{aligned}
\left(\varphi_{a} \circ \varphi_{b}\right)(r) & =a \odot\left(\varphi_{b}(r)\right)^{--} \\
& =a \odot\left(b \odot r^{--}\right)^{--} \\
& =a \odot\left(b^{--} \odot r^{----}\right) \\
& =a \odot\left(b^{--} \odot r^{--}\right) \\
& =\left(a \odot b^{--}\right) \odot r^{--} \\
& =\varphi_{a}(b) \odot r^{--} \\
& =\varphi_{\left(\varphi_{a}(b)\right)}(r) .
\end{aligned}
$$

Definition 4.3. Let L be a $B L$-algebra and assume that $\lambda: L \rightarrow L$ be a $B L$ - homomorphism. A function $\varphi: L \rightarrow L$ is called a λ-derivation, if for all $a, b \in L, \varphi(a \odot b)=\lambda(b) \odot(\varphi(a) \vee \varphi(b))$
Example 4.2. If we consider the $B L$-algebra in Example 3.1, $\lambda=I$ and $\varphi: L \rightarrow L$ by $\varphi(b)=$ $a, \varphi(a)=a, \varphi(0)=0$ and $\varphi(1)=1$, then φ is a λ-derivation, since $\varphi(a \odot b)=\varphi(a)=a$ and $\lambda(b) \odot(\varphi(a) \vee \varphi(b))=b \odot(a \vee a)=b \odot a=a \odot b=a$.

Theorem 4.9. Let φ be a λ-derivation on $B L$ algebra L. Then for every $a, b \in L$:
(i) $\varphi(0)=0$;
(ii) $\varphi\left(a^{n}\right)=\lambda\left(a^{n}\right) \odot \varphi(a)$, for $n \geq 2$;
(iii) If $a \leq b$, then $\varphi(a) \leq \lambda^{--}(b)$. In particular, $\varphi(a) \leq \lambda^{--}(a)$;
(iv) $\varphi(1) \leq \varphi(a)$;
(v) If $\varphi(1)=1$, then $\varphi(a)=1$;
(vi) $a \leq b$ implies $\varphi(a) \odot \lambda(b)=\lambda(a)$.

Proof. By Definition 4.3, we have:
(i) $\varphi(0)=\varphi(0 \odot 0)=\lambda(0) \odot(\varphi(0) \vee \varphi(0))=$ $0 \odot \varphi(0)=0$.
(ii) The proof is by induction on n. For $n=2$, we have, $\varphi\left(a^{2}\right)=\varphi(a \odot a)=\lambda(a) \odot(\varphi(a) \vee \varphi(a))=$ $\lambda(a) \odot \varphi(a)$. Now suppose $\varphi\left(a^{k}\right)=\lambda\left(a^{k}\right) \odot \varphi(a)$. Therefore $\varphi\left(a^{k}\right) \leq \varphi(a)$. Let $n=k+1$, thus $\varphi\left(a^{k+1}\right)=\varphi\left(a \odot a^{k}\right)=\lambda\left(a^{k}\right) \odot\left(\varphi(a) \vee \varphi\left(a^{k}\right)\right)$. Since $\varphi\left(a^{k}\right) \leq \varphi(a), \varphi\left(a^{k}\right) \vee \varphi(a)=\varphi(a)$. Therefore $\varphi\left(a^{k+1}\right)=\lambda\left(a^{k}\right) \odot \varphi(a)$.
(iii) If $a \leq b$, then $a \odot b^{-}=0$. By $(i), 0=\varphi(0)=$ $\varphi\left(a \odot b^{-}\right)=\lambda\left(b^{-}\right) \odot\left(\varphi(a) \vee \varphi\left(b^{-}\right)\right)$. By Proposition 2.1(13), $0=\left(\lambda\left(b^{-}\right) \odot \varphi(a)\right) \vee\left(\lambda\left(b^{-}\right) \odot \varphi\left(b^{-}\right)\right)$. Therefore $\lambda\left(b^{-}\right) \odot \varphi(a)=0$ and $\lambda\left(b^{-}\right) \odot \varphi\left(b^{-}\right)=0$. Since $\lambda\left(b^{-}\right)=(\lambda(b))^{-}=\lambda^{-}(b), \lambda^{-}(b) \odot \varphi(a)=0$ and $\lambda^{-}(b) \odot \varphi\left(b^{-}\right)=0$. Thus $\varphi(a) \leq \lambda^{--}(b)$. Now by taking $a=b$, we have $\varphi(a) \leq \lambda^{--}(a)$.
(iv) By Definition 4.3, $\varphi(a)=\varphi(a \odot 1)=\lambda(1) \odot$ $(\varphi(a) \vee \varphi(1))=1 \odot(\varphi(a) \vee \varphi(1))=\varphi(a) \vee \varphi(1)$,
i.e., $\varphi(1) \leq \varphi(a)$.
(v) By $(i v), \varphi(1) \leq \varphi(a)$. Then $1 \leq \varphi(a)$. Therefore $\varphi(a)=1$.
(vi) Since $a \leq b, a \wedge b=a$. Then $\varphi(a)=\varphi(a \wedge b)=$ $\varphi(b \odot(b \rightarrow a)) \leq \lambda(b \rightarrow a)=\lambda(b) \rightarrow \lambda(a)$. This means that $\varphi(a) \odot \lambda(b)=\lambda(a)$.

Theorem 4.10. If φ is a λ-derivation on $B L$ algebra of L, then $\operatorname{ker} \varphi$ is closed under the operation " \odot ".

Proof. Suppose $a, b \in \operatorname{ker} \varphi$. Then $\varphi(a)=$ $\varphi(b)=0$. Thus, $\varphi(a \odot b)=\lambda(b) \odot(\varphi(a) \vee \varphi(b))$. Therefore, $\varphi(a \odot b)=(\lambda(b) \odot \varphi(a)) \vee(\lambda(b) \odot \varphi(b))$, hence $\varphi(a \odot b) \leq \varphi(a) \vee \varphi(b)=0 \vee 0=0$. This means that $\varphi(a \odot b)=0$, i.e., $a \odot b \in \operatorname{ker} \varphi$. Therefore, $\operatorname{ker} \varphi$ is closed with respect to " \odot ".

5. Conclusion

In summary, this paper focuses on some notions in the field of $B L$-algebras. The primary objective was to introduce some special ideals within the framework of $B L$-algebras, unveiling their properties and establishing relationships between them. Additionally, we introduced a novel definition of \odot-derivation and λ-derivation for $B L$-algebras, and presented new and noteworthy properties associated with these derivations. We hope that the results of this paper can be more clarify the nature of ideals and \odot-derivation in $B L$-algebras and will be a foundation for further research and exploration in this algebraic structures.

6. Acknowledgment

The authors of the paper express their appreciation and gratitude to the referees, the editorial board and especially the manager of the journal of soft computing.

References

[1] Hájek P., "Metamathematics of Fuzzy Logic," Kluwer Academic Publishers, Dordrecht, (1998).
[2] Chavosh M., and Babamir S.M., "Extracting Rules from Specifications and Their Modeling using Colored Fuzzy Petri-Nets," Soft Computing Journal, 11(1): 25-31, 2022, https://doi.org/10.22052/SCJ.2022.246562.1078.
[3] Falahati Aliabadi S., and Taher S.A., "Load frequency control by using fuzzy-PID controller with optimized membership functions," Soft Computing Journal, 9(2): 34-43, 2021, https://doi.org/10.22052/SCJ.2021.242834.0.
[4] Najafi-Arani M.J., and Doostali S., "Cost-based workflow scheduling using algebraic structures," Soft Computing Journal, 9(2): 114-129, 2021, https://doi.org/10.22052/SCJ.2021.242814.0.
[5] Chang C.C., "Algebraic Analysis of Many Valued Logics Trans," American Mathematical Society, 88: 467490, 1958.
[6] Höhle U., "Residuated l-monoids," in Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory (Eds. U. Höhle and E. P. Klement), Kluwer, Boston, (1994).
[7] Lele C., and Nganou J.B., " $M V$-algebra derived from ideals in $B L$-algebra," Fuzzy Sets and Systems, 218: 103-113, 2013, https://doi.org/10.1016/j.fss.2012.09.014.
[8] Paad A., "Integral ideals and maximal ideals in $B L$-algebras," An. Univ. Craiova Ser. Mat. Inform, 43(2): 231-242, 2016, https://doi.org/10.52846/ami.v43i2.723.
[9] Paad A., "Radical of ideals in $B L$-algebras," Annals of Fuzzy Mathematics and Informatics, 3: 1-15, 2017, https://doi.org/10.30948/afmi.2017.14.3.249.
[10] Alinaghian A., Khaksar Haghani F., and Heidarian Sh., "Some Results on Topological BL-Algebras," Journal of Mathematical Extension, 15(3): 1-19, 2021, https://doi.org/10.30495/JME.2021.1456.
[11] Nasr Esfahani M.H., Khaksar Haghani F., and Heidarian Sh., "Some Relations On I-Balls, Radicals, Sequences and Topology In BL-algebras," Miskolc Mathematical Notes, 23(2): 637-650, 2022, https://doi.org/10.18514/MMN.2022.3216.
[12] Alsatayhi S., and Moussavi A., "($\odot, \vee)$ derivations of $B L$-algebras," Asian-European Journal of Mathematics, 11(1): 1-19, 2018, https://doi.org/10.1142/S179355711850016X.
[13] Torkzadeh L., and Abbasian L., " (\odot, \vee)-Derivations for BL-algebras," Fuzzy Sets Systs, 289: 137-150, 2016, https://doi.org/10.22098/JHS.2013.2564.
[14] Di Nola A., Georegescu G., and Loregulescu A., "Pseudo $B L$-algebra," Part I, Multiple. Val. Logic, 8(5-6): 673-714, 2002, https://doi.org/10.30948/i.201.14.3.229.
[15] Turunen E., "Mathematics Behind Fuzzy Logic," Physica-Verlag, Heidelberg, (1998).
[16] Haveshki M., and Mohamadhasani M., "On α-filters of $B L$-algebras," Journal of intelligent and fuzzy systems, 28(1): 373-382, 2015, https://doi.org/10.3233/IFS-141313.
(M. N. E) Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.

Email address, M. N. E: mohammadnasr135@yahoo.com
[F. KH. H]Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.

Email address, F. KH. H: haghani1351@yahoo.com
(SH. H) Department of Mathematics, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.

Email address, SH. H: heidarianshm@gmail.com

[^0]: 2020 Mathematics Subject Classification. 6D99; 06B99; 03G25.

 Key words and phrases. Ideal; Congruence classes; Prime ideal; Maximal ideal; \odot-derivation; Special ideal.
 *: Corresponding author.

