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  . مقدمه1
به طور معمـول از هاي گوناگون براي توصیف و تعریف پدیده

هاي ریاضی، داراي گردد. اغلب مدلهاي ریاضی استفاده میمدل
                                                             

 پژوهشیاله: نوع مق 

  نویسنده مسئول *
  )یرمضان( ramezani@tafreshu.ac.irالکترونیک:  )هاي(پست

sadeghkalantari@tafreshu.ac.ir )يکلانتر(  
madadi@tafreshu.ac.ir )يمدد( 

باشند که باید به نحوي شناسایی شوند. به طور پارامترهایی می
نی ساخت یک مدل ریاضی از سیستم ی به معفرآیند شناسای کلی

گرفتـه شـده بـا اسـتفاده از  نظـر تخمین پارامترهاي مدل درو 
باشد؛ بـه نحـوي کـه اگـر یـک برداري شده میهاي نمونهداده

سازي شده اعمال سیگنال ورودي مشابه به سیستم و مدل شبیه
هاي سیستم اصلی و مدل تقریبا یکسـان باشـند شود، خروجی

این حوزه از تحقیق ریشـه در ریاضـیات، مهندسـی . ]3[ -]1[
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کنترل و پردازش سیگنال دارد. در فرآیند شناسایی سیستم، پس 
گردد. ها) یک مدل انتخاب میآوري دادهبرداري (جمعاز نمونه

پارامترهاي مدل، در مرحله ارزیابی میزان موفقیت پس از تخمین 
ر کسب آزمـونشود. در صورت عدم موفقیت دآن بررسی می

هاي نمونهشود تا با دادههاي ارزیابی، مدل دیگري انتخاب می
ایـن فرآینـد داراي  .]5[، ]4[ برداري تطبیق بهتري داشته باشـد

 باشد که در ادامه توضیح داده خواهد شد.هاي مختلفی میچالش

هاي اساسی در شناسایی و بدست آوردن اطلاعات یکی ازچالش
هاي عددي مناسب ها و الگوریتمخاب مدلمجهول از سیستم، انت

گردد تـا کمبـود اطلاعـات دربـاره . مدل سبب می]6[ باشدمی
سیستم تا حدي جبران شود. پس از انتخاب مدل، مسئله اصلی 

باشـد. تخمین پارامترها با استفاده از اطلاعات در دسترس مـی
انتخاب صحیح مدل و سرعت اجـراي تخمـین پارامترهـا نیـز 

. ]6[ باشندي بسیار مهمی در مسائل شناسایی سیستم میفاکتورها
ها به درستی اگر مدل به درستی انتخاب نگردد، حتی اگر نمونه

. با توجـه بـه ]7[ برآورده گردند نتیجه قابل اعتماد نخواهد بود
توانند هاي گوناگون میبرداري شده، مدلهاي نمونهماهیت داده

ستم شوند. بنابراین اطلاع هاي مختلفی براي سیمنجر به جواب
ها و مدلی که قرار است بکار برده شود بسیار حیاتی از نوع داده

باشد. در بحث انتخاب مدل، مدلی مناسب است که در عین می
سادگی تطابق قابل قبولی با سیستم داشته باشد. سرعت اجراي 
روش پیشنهادي نیز از این حیث حـائز اهمیـت اسـت کـه در 

، بسـیار 2و شناسایی بـرخط 1واقعیردهاي زمانکارببسیاري از 
حیاتی است که شناسایی پارامترها با سرعت و دقت بالایی انجام 

هاي به کاررفته در شناسایی سیسـتم شود. زیرا بسیاري از مدل
هاي حل زمـانسازي پیچیده با روشمنجر به حل مسائل بهینه

د تـا گردند. به همین منظور محققـان در تـلاش هسـتنبري می
همواره مدلی انتخاب شود که در عین سادگی داراي پیچیـدگی 

. بـراي حـل مشـکل پیچیـدگی ]7[سـبی باشـد منا 3محاسباتی
هاي مختلفـی پیشـنهاد شـده ها اخیرا روشمحاسباتی الگوریتم

  .]10[ -]8[ است
                                                             
1 Real Time 
2 Online Identification 
3 Computational Complexity 

هاي ارائه شده استفاده از کامپیوترهـاي یکی از مهمترین روش
پیوترها بـر اسـاس قـوانین فیزیـک باشد. این کامکوانتومی می

شـوند. بـا توجـه بـه خـواص مفیـد ذرات کوانتوم ساخته مـی
میـزان بهبـود  5سازيو موازي 4تنیدگیدرهمکوانتومی همچون 

عملکرد کامپیوترهاي کوانتومی نسبت بـه کامپیوترهـاي فعلـی 
هایی بـر اسـاس در سالهاي اخیر الگوریتم باشد.بسیار بهتر می

می ارائه شده است که پیچیدگی محاسباتی حل محاسبات کوانتو
هـاي اند. الگوریتمیک مسئله را تا حد بسیار زیادي کاهش داده

ي ارائه شده در این هااولین الگوریتم 7و گراور 6کوانتومی شور
. الگوریتم شور براي تجزیه یک عـدد بـه ]10[ باشندحوزه می

الگوریتم از  عوامل اول ارائه شده است. پیچیدگی محاسباتی این
اي است؛ در صورتی که پیچیـدگی محاسـباتی مرتبه چندجمله

باشد. الگوریتم گراور بهترین روش کلاسیک از مرتبه نمایی می
رود. پیچیدگی براي جستجو در یک پایگاه داده نامنظم بکار می

عضو از مرتبه  ݊محاسباتی این الگوریتم براي یک مجموعه با 
ܱ(ඥ݊) ی که پیچیدگی محاسباتی بهترین روش است؛ در صورت

  باشد.می  (݊)ܱکلاسیک 
توانند کاربرد داشته هاي کوانتومی در مسائل مختلفی میالگوریتم

اي شناسـایی همچـون روشباشند. در بسیاري از مسائل پایـه
معکوس ماتریس ، محاسبه شبه)OLS( 8حداقل مربعات معمولی

برداري زیاد است) بسیار ونههاي نم(هنگامی که تعداد داده داده
بـر خواهـد بـود. در روش حـداقل مربعـات معمـولی در زمان

محاسبه پارامترهاي سیستم فرض بر این است که نویز حاصل از 
باشد. براي محاسبه بدون گیري و خطاي ساختار سفید میاندازه

هـاي بایاس پارامترهاي سیستم بـا نـویز رنگـی بایـد از روش
ن روش حداقل مربعـات تعمـیم داده شـده تري همچوپیشرفته

استفاده شود. در مسـائل مختلـف شناسـایی سیسـتم همچـون 
شناسایی با استفاده از روش حداقل مربعات تعمیم داده شـده، 

رود که استفاده از محاسبات کوانتومی سبب افـزایش انتظار می

                                                             
4 Entanglement 
5 Parallelism 
6 Shor's Algorithm 
7 Grover's Algorithm 
8 Ordinary Least Squares 
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هاي کلاسیک شود. به همین سرعت قابل قبولی نسبت به روش
ن مقاله قصد داریم تا از خـواص مفیـد محاسـبات منظور در ای

کوانتومی در مبحث افزایش سرعت و کـاهش بـار محاسـباتی 
روش حداقل مربعات تعمیم داده شده استفاده نماییم. بنابراین، 
در این مقاله هدف شناسایی پارامترهاي یک مدل با ارائه روش 
حـداقل مربعــات تعمــیم داده شــده بــا بکــارگیري محاســبات 

هـایی کـه بـه فـرم نتومی است. در این روش کلیه سیسـتمکوا
  باشند. گردند قابل شناسایی میرگرسیون خطی بیان می

هاي جـدي روش مرسوم حـداقل مربعـات داراي محـدودیت
هاي این روش این اسـت کـه در باشد. از جمله محدودیتمی

ݕرابطه  = Φߠ +  ݒ، ، براي رسیدن به پارامترهاي بدون بایاسݒ
,Φ௡×௣نویز سفید باشد. در رابطه فـوق باید  ߠ ∈ ܴ௣,ݕ ∈ ܴ௡ 

(همچـون  OLSهایی از روش باشند. اما با استفاده از تعمیممی
(GLS 

توان محدودیت نویز سفید را برطرف نمود. در روش می 1
OLS  ߠاگر پارامترهـاي بهینـه بـا اسـتفاده از رابطـه∗ = Φறݕ 

ଶ݊݌)ܱاتی محاسبه شود، هزینه محاسب + ݊ଶاسـت کـه در  (݌
. از طرفی براي شناسایی ]11[ باشدهاي بزرگ بسیار کند میداده

باشد که طبـق رابطـه هاي بیشتري میبهتر سیستم نیاز به نمونه
فوق پیچیدگی محاسباتی بسیار زیاد خواهد بود. بنابراین یافتن 

෤ݔیک الگوریتم سریع که به صورت تقریبی  ≃ را بـرآورده  ∗ݔ
  نماید بسیار ارزشمند است.

با توجه به اهمیت و کاربرد روش حداقل مربعات خطا در علوم 
مختلف، بسیاري از محققان بر روي کاهش بار محاسباتی ایـن 

هاي . در محاسبات کلاسیک الگوریتم]11[ اندروش تمرکز کرده
ــد کــه اي وجــود شــناخته شــده ــا خطــ ෤ݔدارن اي نســبی ـرا ب

෤ݔ‖ − ଶ‖∗ݔ ≤ 0(براي هر ثابت خطـاي  ଶ‖∗ݔ‖ߝ < ߝ < 1  (
 CGهـا همچـون کنند. این نوع از الگوریتممحاسبه می

بـراي  2
هـاي تنُُـک از روشهاي رتبه پایین و ماتریسمحاسبه ماتریس
هاي دلخواه مربعی و تر هستند؛ اما براي ماتریسهاي ساده سریع

. ]12[باشـند می (ଷ݊)ܱرتبه پُر داراي پیچیدگی محاسباتی از م
هاي محاسباتی کمتر با بنابراین در صورت دستیابی به پیچیدگی

                                                             
1 Generalized Least Squares  
2 Conjugate Gradient 

استفاده از محاسبات کوانتومی روش ارائه شده بسیار ارزشمند 
هاي کوانتـومی کـه تـا کنـون باشد. در ادامه برخی از روشمی

  پیشنهاد شده اند مرور خواهد شد.
 HHLیا ( ]12[روش مرجع  

یک الگوریتم کوانتـومی بـراي )، 3
∗ߠمحاســبه  = Φறܱدر زمــان  ݕ(log(݊)ߢଶݏଶ/ߝ)  ــه داده ارائ

ترین روش حل معادلات خطی اياست. این روش به عنوان پایه
توان به هرمیتی هاي آن میشود. از جمله محدودیتشناخته می

حالت بودن ماتریس داده اشـاره کـرد. همچنـین بودن و خوش
خمین پارامترها با این روش در حضور نویز رنگی سبب بایاست

از لحاظ سـاختار  ]11[گردد. روش مرجع دار شدن تخمین می
بسیار شبیه است. در این روش مشکل  HHLالگوریتم به روش 

هرمیتی بودن حـل شـده اسـت و پیچیـدگی زمـانی از مرتبـه  
ܱ(log(݊ + روش عـلاوه بـر  باشد. در ایـنمی (ଶߝ/ଶݏଷߢ(݌

نیـز (بـدون افـزایش  ⟨ݔ|تخمین پارامترها مقدار نُرم خروجی 
یـک  ]13[شود. روش مرجع پیچیدگی محاسباتی) محاسبه می

الگوریتم کوانتومی براي بدست آوردن مقادیر تکـین در زمـان 
پـارامتر دقـت  ߜپیشنهاد داده است که  (ߜ/(݊݉)logݕ݈݋݌)ܱ

تنُکُ بودن و هرمیتی بودن مـاتریس  باشد. این روش مشکلمی
هاي مناسب حل کرده است. یکی داده را با بکارگیري ایزومتري

از مشکلات اساسی این روش عدم تعیین علامت مقادیر تکین 
رونـد) تخمین زده شده (که در سـاخت خروجـی بـه کـار می

بـر مبنـاي تخمـین مقـادیر تکـین  ]14[مرجع باشد. روش می
هـاي تخمـین فـاز و اسـتفاده از ایزومتريکوانتومی، تصـحییح 
هاي هرمیتـی است. این روش محدودیتمناسب بنا نهاده شده 

بودن و تنُکُ بودن را برطرف نموده است؛ امـا نحـوه انتخـاب 
هـاي اساسـی آن مناسب در این روش از چالش هايایزومتري

هاي بیان شده مشکل بایاس دار بودن باشد. در تمامی روشمی
ارامترها در حضور نویز رنگـی و محـدودیت خـوشتخمین پ

باشد. با توجـه حالت بودن ماتریس ورودي همچنان برقرار می
گیري از ، در این مقاله قصد داریم با بهرهGLSبه اهمیت روش

هـاي و برخی از ایـده ]13[و  ]12[هاي بیان شده در مقاله ایده
مـام کوانتـومی و ت-الگـوریتم کلاسـیک هـايپیشنهادي، روش

                                                             
3 Harrow Hassidim Lioyd  
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هاي پیشنهادي را ارائه نماییم. روش GLS کوانتومی براي روش 
در عمل کاربرد بیشتري داشته و براي نویزهاي رنگی نیز قابـل 

ها پارامترهاي سیستم را بدون استفاده هستند. بنابراین این روش
-کلاسیککنند. لازم به ذکر است که در روشبایاس محاسبه می

حـل مشـکل خـوش حالـت بـودن  کوانتومی پیشنهادي، براي
شود. و تجزیه اسکلت استفاده می SVDماتریس داده، از روش 

 GLSبراي حل مشکل بایاس دار بودن پارامترها نیـز از قضـیه 
استفاده خواهیم کرد. در روش تمام کوانتومی پیشنهادي نیز براي 
حل خوش حالت بودن ماتریس داده از تقطیـع مقـادیر تکـین 

در قسمت دوم مقاله به مرور برخی از پیش استفاده شده است.
هـاي نیازهاي اصلی خواهیم پرداخـت. در بخـش سـوم روش

پیشنهادي به همراه نتایج ارائه خواهند شـد. در بخـش چهـارم 
 IBMشـرکت  QISKITسازي یک مسئله ساده در محیط شبیه

پردازد. لازم به گیري میانجام شده است و بخش پنجم به نتیجه
اي محاسبات کوانتـومی در این مقاله مباحث پایه ذکر است که

هاي کوانتومی، تخمین فاز، تقویت دامنه، همچون آشنایی با گیت
هاي کوانتومی بیان نشده است سازي کوانتومی و الگوریتمموازي

   دهیم.ارجاع می ]15[و خوانندگان را به مرجع 

 نیازهاپیش. 2

راي حـل مشـکل در این بخش برخی از مباحث ریاضی لازم ب
گردد. به همین منظـور حالت بودن ماتریس داده بیان میخوش

و سپس روش تجزیه اسـکلت توضـیح داده  SVDابتدا روش 
  خواهد شد.

  SVDروش . 2.1
و اسـتفاده از آن در  SVDدر این قسمت هدف معرفـی روش 
باشـد. همـانطور کـه مـی 1محاسبه تقریب رتبه پایین مـاتریس

هاي بدحالت عدد شرط (نسبت بزرگترین به دانیم در ماتریسمی
کوچکترین مقدار تکین) بسیار بزرگ است. به همین علـت در 

فرض بر آن است که ماتریس خوش حالت است و  HHLروش 
له شناسایی سیستم بعضا . اما در مساباشدعدد شرط کوچک می

                                                             
1 Low Rank Approximation  

 مسالههاي بدحالت سروکار داریم. در این مقاله این با ماتریس
و  SVDتقریب رتبه پایین ماتریس با استفاده از روش  وسیلهه ب

تقریب شبه اسکلت حل شده است. بنابراین روش به کار روش
 برده شده در این قسمت با جزئیات توضیح داده خواهد شد. 

، SVDباشد. در نظریه دهنده یک سیگنال مینشان ܣفرض کنید 
  کرد:توان به صورت معادله زیر تجزیه هر ماتریس را می

ܣ  )1( = ܷΣܸ௧ 

௠×௠ܷ که در این رابطه = .ଵݑ] . (بردار تکـین چـپ) و  [௠ݑ.
௡ܸ×௡ = .ଵݒ] .   .]16[(بردار تکین راست) متعامد هسـتند  [௡ݒ.

௧ܷܷبنابراین رابطه  = ܷ௧ܷ = ௠ܫ   ܸܸ௧ = ܸ௧ܸ = برقرار  ,௡ܫ
و   ௠×௠ܷهاي  هاي ماتریساست که ستون لازم به ذکر باشد.می
௡ܸ×௡ ܣܣبه ترتیب از بردارهاي ویژه متعامد یکه ماتریس هاي௧ 

قطري اسـت نیز شبه Σ௠×௡ ماتریس تشکیل شده است. ܣ௧ܣو 
 ௧ܣܣیـا  ܣ௧ܣکه مقادیر روي قطر آن مقـادیر تکـین مـاتریس 

  اهیم داشت:باشند. بنابراین خومی

)2(  Σ௠×௡ = ݀݅ܽ݃൫ߪଵ, … , ݌,௣൯ߪ = min{݉, ݊} 
ଵߪ ≥ ଶߪ ≥. . .≥ ௞ߪ > ௞ାଵߪ,0 =. . . = ௣ߪ = 0 

کوچکترین مقدار منفرد غیر صفر  ௞ߪبزرگترین و  ଵߪکه در آن 
  باشد.ماتریس می

  تقریب رتبه پایین مسالهبندي فرمول. 2.2

ین ماتریس در شناسایی سیستم بسیار سـودمند تقریب رتبه پای
هاي مختلـف، مـاتریس داده برداريباشد. با توجه به نمونـهمی

ممکن است بدحالت شـود. محاسـبه معکـوس یـک مـاتریس 
باشد. استفاده از تقریب رتبـه هایی روبرو میبدحالت با چالش

هاي موثر رفـع بـدحالتی مـاتریس اسـت. پایین یکی از روش
تـوان بـا اسـتفاده از تر را مـیماتریس با رتبه پایینتقریب یک 

انجام داد. بنابراین هدف در ایـن بخـش تخمـین  SVDتجزیه 
باشـد. طبـق می ܣبا استفاده از مـاتریس  ܤماتریس رتبه پایین 

خـواهیم  ݎبا رتبـه  ܣرابطه زیر در تقریب رتبه پایین ماتریس 
 داشت: 
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ܣ = [ ଵܷ| ଶܷ]൦

ଵߪ 0 0 
0 ⋱ 0
0 0 ௥ߪ

0

0 0

൪ ቈ ଵܸ
்

ଶܸ
்቉  , (ܣ)݇݊ܽݎ =  .ݎ

)3( 

، تجزیـه مقـدار تکـین ܸو  ܷبا توجه به تعریف دو مـاتریس 
  توان به صورت زیر نشان داد:ماتریس را می

ܣ )4( = ଵ௧ݒଵߪଵݑ + ଶ௧ݒଶߪଶݑ +⋯+ ௥௧ݒ௥ߪ௥ݑ , 
ଵߪ > ଶߪ >. . . >  . ௥ߪ

را به صورت خطی در قالب معـادلات  ܣبه طور کلی ماتریس 
  دهیم.نشان می ܣزیر با توجه به تجزیه مقادیر تکین 

ܣ = ଵܷ௔| ଵܷ௕| ଶܷ]

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ଵߪ 0 0
0 ⋱ 0

0 ௞ߪ 0
0 ௞ାଵߪ 0

0 ⋱ 0
0 ௥ାଵߪ 0

0 0 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

൦
ଵܸ௔
்

ଵܸ௕
்

ଶܸ
்
൪ 

ܣ = ଵ௧ݒଵߪଵݑ + ଶ௧ݒଶߪଶݑ +⋯+ ௞௧ݒ௞ߪ௞ݑ
+ ௞ାଵ௧ݒ௞ାଵߪ௞ାଵݑ +. . . ௥௧ݒ௥ߪ௥ݑ+ ⇒ ܣ
= ଵ௧ݒଵݑଵߪ + .+ଶ௧ݒଶݑଶߪ . . ௞௧ݒ௞ݑ௞ߪ+
+ ௞ାଵ௧ݒ௞ାଵݑ௞ାଵߪ +. . . ௥௧ݒ௥ݑ௥ߪ+ ⇒ ܣ 

= ෍ܽ௜

௥

௜ୀଵ

߶௜ 

)5(  

باشـند هاي متناظر میها پایه௜ݒ௜ݑها ضرایب و ௜ߪ) 5در رابطه (
با استفاده از اطلاعات که بر خلاف پایه هاي ثابت سري فوریه، 

شوند. با توجه به معادله سیگنال به صورت تطبیقی انتخاب می
ଵߪ > ଶߪ >. . . > ضرایب اولیه نقش بیشـتري در بازسـازي  ௥ߪ

ماتریس دارند. این موضوع همچنین براي نمایش یک سیگنال 
کند. اکنون لبگ صدق می-توسط سري فوریه بر اساس لم ریمان

(تقریب رتبه پایین ماتریس) به عنوان یک  ܤعیین اصلی ت مساله
  سازي به فرم زیر است:بهینه مساله

ܤ  )6( = argmin
௭

ܣ‖ − (ݖ)݇݊ܽݎ    .ݐݏ    ଶଶ‖ݖ = ݇ . 

بر روي ماتریس، و با در نظر گرفتن قضیه  SVDبا فرض اعمال 
موجود است، پاسخ  ]18[که در مرجع  1میرسکی- یونگ-اکارت
  بهینه سازي به صورت زیر خواهد بود: مسالهسته براي فرم ب

                                                             
1 Eckart-Young-Mirsky 

)7( 

Σ஻ = ,ଶߪ,ଵߪ)݃ܽ݅݀ . . . , ,௞ߪ 0,0, . . .0) 

ܤ = ܷΣ஻ܸ௧ = ଵ௧ݒଵߪଵݑ + .+ଶ௧ݒଶߪଶݑ . . ௞௧ݒ௞ߪ௞ݑ+ ⇒ 

ܤ = ଵܷ௔ ቎
ଵߪ 0

⋱
0 ௞ߪ

቏ ଵܸ௔
௧ = ଵܷ௔Σ஻ ଵܸ௔

௧  . 

قضیه در مرجع بالا معیاري را براي محاسـبه مقـدار بهینـه بـه 
  کند:صورت زیر بیان می

)8(  ෍ߪ௜ଶ
௞

௜ୀଵ

≥ ෍ ௜ଶߪ
௣

௜ୀ௄ାଵ

݌    ,    = min{݉,݊}. 

مطابق با معیار فوق، مجموع مقادیر تکین باقی مانده باید بزرگتر 
ر تقطیع شده باشد تـا بتـوان یـک (یا مساوي) از مجموع مقادی

تقریب رتبه پایین مناسب را بدست آورد. بنابراین طبـق رابطـه 
) براي حل موضوع بدحالت بودن ماتریس داده ابتدا تقریب 8(

گردد. با این محاسبه می SVDرتبه پایین ماتریس توسط روش 
تر که سبب بدحالت شـدن مـاتریس عمل مقادیر تکین کوچک

براي  SVDشوند. پیچیدگی محاسباتی روش اند حذف میشده
݊یک ماتریس با سایز  × باشد. بنـابراین می (ଷ݊)ܱاز مرتبه  ݊

گـردد. بـه استفاده از این روش سبب افزایش بار محاسباتی می
منظور کاهش پیچیدگی محاسباتی در تخمین رتبه پایین، روش 

در  و تجزیه شبه اسکلت پیشنهاد شده است که 2تجزیه اسکلت
  پردازیم.قسمت بعد به آنها می

  تجزیه اسکلت. 2.3
را در نظر بگیرید. تقریب اسکلت این ماتریس  ௠×௡ܣماتریس 

ܣبه صورت  = ستون  ݇به ترتیب شامل  ܥ,ܴباشد که می ܴܩܥ
ܩو  ܣو سطر انتخاب شـده از مـاتریس  = باشـند. مـی ଵିܯ

௞×௞ܯماتریس  = ,ܫ)ܣ ,ܫ)است که  (ܬ هـاي سطر و سـتون (ܬ
باشـند. در رابطـه با بعُد حداکثر می ܣانتخاب شده از ماتریس 

بسیار دشوار  ܯحداکثر  فوق به دست آوردن زیرماتریس با بعُد
شـود است؛ بنابراین با یک زیرماتریس شبه بهینه جایگزین می

 maxvol. براي بدست آوردن ایـن مـاتریس از الگـوریتم ]19[
کنیم. براي ساختن یک تقریب استفاده می ]20[ موجود در مرجع

                                                             
2 Skeleton Approximation 
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، maxvolبا استفاده از الگـوریتم  ܣاز ماتریس  ݇اسکلت رتبه 
 شود.مراحل زیر اجرا می

ܬهاي را با اندیس ܣستون از  ݇ -1 = (݆(ଵ), ݆(ଶ), . . . , ݆(௞)) 
 ܥرا محاسبه کرده و در یک ماتریس ذخیره کرده و آن را 

௠×௞ܥقرار دهید: بنامید. یعنی  = :)ܣ ,   .(ܬ

مرجع ( maxvol را با بکارگیري پروسه مناسبماتریس  -2
دست آورید. خروجی در این قسمت ه ب ܥ) بر روي ]20[

ܫاندیس سطرهاي  = (݅(ଵ), ݅(ଶ), . . . , ݅(௞)) باشد.می 

௞×௡ܴدست آمـده را در مـاتریس ه سطر ب ݇ -3 = ,ܫ)ܣ : ) 
 قرار دهید.

ܣبه صورت  سکلتا تجزیه -4 ≈ ܩاست که  ܴܩܥ =  ଵିܯ
௞×௞ܯو  = ,ܫ)ܣ  باشد.می (ܬ

ܬهاي اگردر ابتداي الگوریتم اندیس = (݆(ଵ), ݆(ଶ), . . . , ݆(௞))  به
درستی انتخاب نشوند، تقریب بدست آمده ممکن اسـت قابـل 

نیز بدحالت بوده و معکوس  ܯاعتماد نباشد؛ بنابراین ماتریس 
نخواهد بود. براي حـل ایـن مشـکل روش تقریـب شـبه  پذیر

اسکلت ارائه شده است که در قسمت بعد توضیح خواهیم داد. 
باشـد مـی (݇݉)ܱبرابر با  maxvolپیچیدگی محاسباتی روش 

ورت ـــ. پیچیدگی محاسـباتی الگـوریتم بـالا نیـز بـه ص]20[
ܱ(݉݇ +݉݇ + ݇݊ + ݇ଶ݉ + ݇݉݊ + ݇ଷ) توجه باشد. با می

݇به  << ݉, ، پیچیدگی محاسباتی الگـوریتم فـوق از مرتبـه ݊
  خواهد بود. (݊݉݇)ܱ

 اسکلتروش تجزیه شبه. 2.4

باید معکـوس  ܯهمانطور که در بخش قبل بیان شد، ماتریس 
معکوس این ماتریس یک انتخاب مناسب براي پذیر باشد. شبه

با  ௠×௡ܣباشد. براي ساخت تقریب شبه اسکلت ماتریس می ܯ
ݎرتبه  ≤ min(݉,݊)کنیم. بـه جـاي ، به صورت زیر عمل می

݇)݇، ܣستون از ماتریس  ݎانتخاب  > سـتون تصـادفی بـا  (ݎ
ܬهاي اندیس = (݆(ଵ), ݆(ଶ), . . . , ݆(௞)) کنـیم و آن را انتخاب می

௠×௞ܥرا  = :)ܣ , براي  maxvolنامیم. سپس از الگوریتم می (ܬ

ܫهاي سطر با اندیس ݇یافتن  = (݅(ଵ), ݅(ଶ), . . . , ݅(௞))  اسـتفاده
௞×௡ܴکرده و ماتریس  = ,ܫ)ܣ : دهیم. بنابراین، را تشکیل می (

௞×௞ܯماتریس  = ,ܫ)ܣ و تقریب شبه اسـکلت بـه صـورت  (ܬ
௞×௞ܯ௠×௞ܥ~ܣ

ିଵ ܴ௞×௡ باشد. به دلیل انتخاب تصادفی ستونمی
ممکن است پایدار نباشد. براي حل این  ܯ، معکوس ماتریس ها

گـردد. تجزیه می SVDبا استفاده از روش  ܯمشکل، ماتریس 
ــابراین ܯ ،بن = ܷெܵெ ெܸ

் )ܷெ  وெܸ ــاتریس ــد م ــاي متعام ه
ଵߪمقدار تکین  ݇نیز ماتریس قطري شامل  ெܵباشند) و می ≥

ଶߪ ≥. . .≥ میرسکی -است. حال با استفاده از روش یانگ  ௞ߪ
گردد و به جاي مقادیر محاسبه می ܯتقریب رتبه پایین ماتریس 

هاي شود. بنابراین ماتریستکین بسیار کوچک صفر قرار داده می
ܷ,ܸ, از  ܯشوند و شبه معکوس مقدار تکین تقطیع می ݎبا  ܵ
 آید.) بدست می9رابطه (

றܯ  )9( = ( ௥ܷܵ௥ ௥ܸ
்)ିଵ = ௥ܸܵ௥ିଵ ௥ܷ

் 

ܥ~ܣبه صـورت  ܣدرنهایت ماتریس  ௥ܸܵ௥ିଵ ௥ܷ
تقریـب زده  ்ܴ

شود. مراحل توضیح داده شده به صورت الگوریتم در زیـر می
  بیان شده است.

هاي به صورت رندوم با اندیس ܣستون را از ماتریس  ݇ -1
ܬ = (݆(ଵ), ݆(ଶ), . . . , ݆(௞))   انتخاب نماییـد و آنهـا را در

௠×௞ܥماتریس  = :)ܣ ,   قرار دهید. (ܬ

مرجع ( maxvol ماتریس مناسب را با بکارگیري پروسه -2
دست آورید. خروجی در این قسمت ه ب ܥ) بر روي ]20[

ܫانــدیس ســطرهاي  = (݅(ଵ), ݅(ଶ), . . . , ݅(௞)) باشــد. مــی
௞×௡ܴن داریم: بنابرای = ,ܫ)ܣ : ௞×௞ܯو  ( = ,ܫ)ܣ  .(ܬ

 را اعمال نمایید. SVD روش ܯبر روي ماتریس  -3

بـر روي  ݎرا بـراي مقـدار  تکـینفرآیند تقطیع مقـادیر  -4
,ܸ,ܷهاي ماتریس  انجام دهید. ܵ

ه ـــــتفاده از رابطـــــرا بـا اس ܯوس ــــــمعکشبه  -5
றܯ = ( ௥ܷܵ௥ ௥ܸ

்)ିଵ = ௥ܸܵ௥ିଵ ௥ܷ
 دست آورید.ه ب ்

ܥ~ܣبه صورت  ܣتقریب  -6 ௥ܸܵ௥ିଵ ௥ܷ
 بود. خواهد ்ܴ
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پیچیدگی محاسباتی الگوریتم فوق همانند بخش قبلی به صورت 
ܱ(݇ଷ + ݉)݇ݎ + ݊) ଶݎ݉+ + ــبه  (݊ݎ݉ ــیمحاس ــردد.م  گ

 SVDلا مربـوط بـه فرآینـد اضافه شده در رابطه با ଷ݇عبارت 
݇باشد. با توجه به رابطه می << ݉, پیچیـدگی محاسـباتی ، ݊

 (݊݉ݎ)ܱاز مرتبه  ݊,݉ الگوریتم فوق نسبت به مقادیر ورودي
خواهد بود. بنابراین در این قسـمت بـا اسـتفاده از روش شـبه 

توانیم مشکل بدحالت بودن مـاتریس ورودي را بـا اسکلت می
  اتی کمتري حل نماییم.پیچیدگی محاسب

  )WLS( 1دارروش حداقل مربعات وزن. 2.5
در روش حــداقل مربعــات وزن داده شــده خطــا در لحظــات  

مـاتریس  WLSمختلف از ارزش یکسانی برخوردار نیست. در 
تواند هر ماتریس دلخواهی باشد و تنها شرط این است وزن می

تـوان می ߠ نسبت به ܵکه مثبت معین باشد. با مشتق گرفتن از 
  دست آورد:ه رابطه پارامترهاي بهینه را به صورت زیر ب

෠ௐ௅ௌߠ  )10( = (்ܷܹܷ)ିଵ.்ܷܹݕ. 

 یافته کوانتومیتعمیم GLSروش . 3

به منظور حل مشکل تخمین پارامترها در حضـور  GLSروش 
نویز رنگی ارائه شده است. در این روش فرض بر آن است که 

شـود کـه تخمـین باشد و تلاش مینویز مشخص می دینامیک
بدون بایاس از پارامترهاي سیستم ارائه شود. در شناسایی سیستم 
با استفاده از حداقل مربعات، بـا بکـارگیري تـابع همبسـتگی، 

௧݁ماتریس همبستگی و مدل  = .(ଵିݖ)ܥ توان به تخمین می ௧ݒ
، دینامیک IGLSتکراري بدون بایاس رسید. با استفاده از روش 

. در ایـن روش بـا فـرض داشـتن ]5[ آیـدنویز نیز بدست می
دینامیک نویز (مقداردهی اولیه) دینامیک سیستم شناسایی مـی

شود و در بخش دوم با فرض شناختن سیستم دینامیـک نـویز 
گـردد تـا آید. این مراحل به طور مداوم تکـرار مـیبدست می

این فرض داشتن دینامیک نویز در تخمین بهینه بدست آید. بنابر
کند. با توجه به اینکه در روش محدودیتی ایجاد نمی GLS مساله

                                                             
1Weighted Least Square  

GLS ) ܴباید دینامیک نویز یا ماتریس همبستگی خطا௘ معلوم (
بدون بایاس را از روي روش حداقل مربعات  ෠ߠتوان باشد، می

ܹوزن داده شده هنگامی که  = ܴ௘ିଵ نطور که بدست آورد. هما
 باشد:دانیم ماتریس همبستگی خطا به صورت زیر میمی

ܴ௘(݁) =

⎣
⎢
⎢
(ଵଶ݁)ܧ⎡ (ଵ.݁ଶ݁)ܧ ⋯ (ଵ݁ே݁)ܧ
.ଶ݁)ܧ ݁ଵ) (ଶଶ݁)ܧ ⋯ .ଶ݁)ܧ ݁ே)
⋮ ⋮ ⋱ ⋮
ே݁)ܧ . ݁ଵ) ே݁)ܧ .݁ଶ) ⋯ (ேଶ݁)ܧ ⎦

⎥
⎥
⎤
. 

)11( 

داراي  (݇)ܴیس همبستگی با تابع خود همبستگی همچنین ماتر
  باشد:رابطه زیر می

ܴ(݇) = ൦

ܴ(0) ܴ(1) ⋯ ܴ(ܰ − 1)
ܴ(1) ܴ(0) ⋯ ܴ(ܰ − 2)
⋮ ⋮ ⋱ ܴ(1)
ܴ(ܰ − 1) ܴ(ܰ− 2) ܴ(1) ܴ(0)

൪. 

)12( 

௧݁مدل  اگر = .(ଵିݖ)ܥ تـوان مشخص باشد از روي آن می ௧ݒ
کنیم ضرائب چند آورد. فرض میماتریس همبستگی را بدست 

௧݁اي جملـــه = ௧ݒ(ଵିݖ)ܥ = ௧ݒ + معلـــوم اســـت.  ௧ିଵݒଵܥ
  بنابراین داریم:    

)13( ܴ௘(݁) = .ଶߪ

⎣
⎢
⎢
⎡1 + ଵଶܥ ଵܥ ⋯ 0
ଵܥ 1 + ଵଶܥ 0
⋮ ⋱ ⋮
0 ଵܥ 1 + ⎦ଵଶܥ

⎥
⎥
⎤
. 

نویز سفید نیست  ௧݁حال فرض کنید در روش حداقل مربعات، 
این است که  GLSباشد. هدف در اما دینامیک نویز مشخص می

به نحوي به نویز سفید تبدیل شود تا بتوان تخمین بدون  ௧݁نویز 
بدست آورد. با استفاده از قضیه زیر این مشکل  ߠبایاس براي 

  شود.حل می
توان از روي یبدون بایاس را م ෠ߠ معلوم باشد ௘ܴاگر  :1قضیه 

ܹروش حداقل مربعات وزن داده شده وقتـی  = ܴ௘ିଵ  اسـت
  .]5[بدست آورد 

یکی از مشکلات روش حداقل مربعات معمولی تخمین بایاس
باشد. در قسمت قبل دیدیم که در دار در حضور نویز رنگی می

توان به تخمین بدون بایـاس صورت شناخت دینامیک نویز می
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یکی از فرضیات خوش  HHLحات روش دست یافت. در توضی
(به منظور تضمین معکوس پذیر بودن)  ܣحالت بودن ماتریس 
باشد. در این قسمت ابتدا روشـی (ترکیـب و تنُکُ بودن آن می

هاي کوانتومی و کلاسیک) ارائه خواهد شد که نسبت بـه روش
باشد. کلاسیک داراي پیچیدگی محاسباتی کمتري می هايروش

ادي، فقط کافیست که ماتریس داده داراي تقریب پیشنهدر روش
رتبه پایین باشد. پس از تقریب رتبه پایین ماتریس توسط روش 

)، مقادیر تکینی که سبب بد حالت SVDشبه اسکلت (مبتنی بر 
گـردد. بـا توجـه بـه رابطـه شوند حذف مـیشدن ماتریس می

෠ௐ௅ௌߠ = (்ܷܹܷ)ିଵ.்ܷܹرگرسـیون تعمـیم  همسالبراي  ݕ
ݔܣ مسـالهتوانیم یافته کوانتومی می = را بـا مقـادیر ورودي  ܾ

ܣ = ்ܷܹܷ, ܾ = بـا  1حل کنیم. بر اسـاس قضـیه  ݕ்ܹܷ
روش پیشنهادي تخمین پارامترها بـدون بایـاس خواهـد بـود. 

کوانتومی پیشنهادي به منظور -مراحل الگوریتم ترکیبی کلاسیک
صورت به  ربعات تعمیم داده شده کوانتومیحداقل م مسالهحل 

  باشد. زیر می

  پیشنهادي کوانتومی-کلاسیک ترکیبی الگوریتم ):1( الگوریتم

ܹو  ௜ ،ܾ௜ܣ ماتریس ها: ورودي = ܴ௘ିଵ  
௡ܣ = ௜ܣ௜்ܹܣ , ܾ௜ =  ௜்ܹܾ௜ܣ

ܣ = ൤0 ௡்ܣ
௡ܣ 0 ൨ , ܾ = ቂܾ௡0 ቃ ݔ, = ൤0ݔ௡

൨ 

با استفاده از روش شبه اسکلت تقریب رتبه پایین ماتریس  - 1
  محاسبه گردد. ܣ

⟨ܾ|حالت کوانتومی  - 2 = ∑ ௜⟩ேݒ|௜ߚ
௜ୀଵ  را با استفاده از روش

 آماده کنید. ]21[

با استفاده از روش تخمین فاز مقادیر ویژه محاسبه گردد:  - 3
∑ ௜⟩ேݒ|௜ߚ
௜ୀଵ  .⟨௜ߣ|

 با استفاده از چرخش کنترلی حالت زیر را ایجاد نمایید. - 4

෍ߚ௜|ݒ௜⟩
ே

௜ୀଵ

−௜⟩(ට1ߣ| ⟨௜ିଶ|0ߣ +  (⟨௜ିଵ|1ߣ

(عکس فرآیند تخمین مقدار ویژه) را  فرآیند عدم محاسبه - 5
  انجام دهید. ⟨௜ߣ|براي 

∑را  ⟨1|دامنه حالت  - 6 ௜⟩ேݒ|௜ିଵߣ௜ߚ
௜ୀଵ = گیري اندازه ⟨ݔ|

  نمایید.

  (تخمین پارامترها) ⟨ݔ|خروجی: 

در الگوریتم فوق مرحله اول به صورت کلاسیک و بقیه مراحل 
گردد. با توجه به با تبدیل مقادیر کلاسیک به کوانتومی انجام می

)، و ((݊)ଶlog݊)ܱ (هاي پـردر ماتریس HHLپیچیدگی روش 
روش شبه اسکلت که در بخش قبلی مورد مطالعه قرار گرفت، 
پیچیدگی محاسباتی الگوریتم فوق نسبت بـه ورودي از مرتبـه 

ܱ(݇ଷ + ݇ݎ2݊ + ଶݎ݊ + ଶ݊ݎ + log(݊))~ܱ(݊ݎଶ)  ــد خواه
تی روش ترکیبی پیشنهادي مقاله بود. بنابراین پیچیدگی محاسبا

ــــــــه از  (݊)ଶlog݊)ܱمرتب + (݊)ଶ)~ܱ(݊ଶ(log݊ݎ +   ((ݎ
باشد. این در حالی است که روش شبه معکـوس و تجزیـه می

چولسکی براي محاسبه پارامترهاي حـداقل مربعـات از مرتبـه 
ܱ(݊ଷ)  خواهند بود. بنابراین روش ترکیبی پیشـنهادي، برتـري

هاي کلاسـیک دارد. بـا محاسباتی قابل توجهی نسبت به روش
فاده از الگوریتم پیشنهادي، مشکل هرمیتـی بـودن مـاتریس است

ورودي، خوش حالت بودن و نویز رنگی حل شده است که از 
  باشد. مزایاي دیگر روش ترکیبی پیشنهادي می

 یافتهالگوریتم تمام کوانتومی حداقل مربعات تعمیم. 3.1
GLS  

 مسـالهدر این قسمت یک الگوریتم تمام کوانتومی بـراي حـل 
ل مربعات تعمیم یافتـه ارائـه خواهـد شـد. در الگـوریتم حداق

پیشنهادي، برخلاف روش قبلـی مرحلـه اول نیـز بـه صـورت 
گـردد. در ایـن روش از مقـادیر تکـین بـه کوانتومی انجام می

صورت مستقیم در ساخت خروجی استفاده خواهد شد. قبل از 
  پردازیم.می QSVEارائه الگوریتم پیشنهادي به مرور قضیه 

فرض کنید  :)]13[جع (برگرفته از مر QSVE: قضیه 2قضیه  
ܣکه  ∈ ܴ௠×௡  ܣیـک مـاتریس بـا تجزیـه مقـادیر تکـین =

∑ ௜௜ߪ ذخیره شده است و  1باشد که در ساختار داده لممی ௜௧ݒ௜ݑ
ߜ > در زمـان  QSVEنیز پارامتر دقت باشد. آنگاه الگوریتم  0

ــــی (ߜ/(݊݉)logݕ݈݋݌)ܱ ــــرا م ــــت اج ــــردد و نگاش گ
∑ ௩೔௜ߙ ⟨௜⟩|0ݒ| → ∑ ௩೔௜ߙ شـود کــه در آن انجـام مــی ⟨෤௜ߪ|⟨௜ݒ|

෤௜ߪ ∈ ௜ߪ ± باشد. خوانندگان محترم براي اطلاعات می ி‖ܣ‖ߜ
 مراجعه نمایند. ]13[و اثبات قضیه به مرجع  1بیشتر درباره لم

 QSVEوریتم پیشنهادي تمـام کوانتـومی مقالـه از روش در الگ
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استفاده خواهیم کرد. با اسـتفاده از ایـن روش مشـکل خـوش 
حالت بودن ماتریس حل خواهد شد و الگوریتم توانـایی حـل 
مسائل با ماتریس غیرهرمیشن را دارا خواهـد بـود. بـا فـرض 

ܣتجزیه مقادیر تکین  = ∑ ௜௜ߪ حـداقل  مساله، براي حل ௜௧ݒ௜ݑ
݁مربعات داریم:  = ݔܣ‖ − ܾ‖ଶ ݔ. با فرض نمایش بردارهاي 

  داریم: {௜ݒ} و {௜ݑ} هايبر حسب پایه ܾو 

)14(  
݁ = ݔܣ‖ − ܾ‖ଶ = ะ෍ߪ௜ݑ௜ݒ௜௧෍ߙ௜ݒ௜ −෍ߚ௜ݑ௜

௠

௜ୀଵ

௡

௜ୀଵ

௥

௜ୀଵ

ะ
ଶ

   

= ෍(ߪ௜ߙ௜ ௜)ଶߚ− − ෍ ௜ߚ
ଶ

௠

௜ୀ௥ାଵ

௥

௜ୀଵ

௜ߙباید  ،)16براي حداقل شدن رابطه ( = ఉ೔
ఙ೔

راین ـباشـد. بنابـ 
ݔ = ∑ ఉ೔

ఙ೔
௥
௜ୀଵ خواهد بود. طبق فرمول بنـدي بیـان شـده در  ௜ݒ

مربعـات  )، براي رسیدن به تخمین بهینه در روش حـداقل16(
∑باید حالت کوانتـومی  ௜⟩௥ݒ|௜ିଵߪ௜ߚ

௜ୀଵ = محاسـبه شـود.  ⟨ݔ|
∑بنابراین در این قسمت هدف تبدیل  ௜௥ߚ

௜ୀଵ ∑بـه  ௜ݑ ఉ೔
ఙ೔

௥
௜ୀଵ  ௜ݒ

عـدم تعیـین  QSVEباشد. یکی از مشکلات مهم در قضـیه می
باشد. همچنین با توجه شده می علامت مقادیر تکین تخمین زده

෤௜ߪبه هرمیتی بودن ماتریس ورودي داریم:  = หߣሚ௜ห در این مقاله .
هاي کلی باید علامـت براي ماتریس GLS مسالهبه منظور حل 

مقادیر تکین مشخص باشد. به همین دلیل با الهام از ایده مطرح 
تکـین از  ، به منظور تعیین علامت مقـادیر]22[شده در مرجع 

بر روي دو  QSVEروش زیر استفاده خواهیم کرد. ابتدا روش 
ᇱܣو  ܣماتریس  = ܣ + باشد) یک اسکالر مثبت می ߙ(که  ܫߙ
 ᇱܣگردد. لازم به ذکر است که بردارهاي ویژه ماتریس اجرا می

هستند. اما مقادیر ویژه آن برابر  ܣهمان بردارهاي ویژه ماتریس 
௜ߪبا  + ௜ߪخواهد بود. بـراي هـر  ߙ ≥ ௜ߪ|داریـم:  0 + |ߙ =

|௜ߪ| + |ߙ| ≥ ௜ߪو اگر  |௜ߪ| ≤ − ఈ
ଶ

௜ߪ|داریـم:   + |ߙ ≤ . |௜ߪ|
بنابراین با مقایسه دو مقدار تکین بدست آمده در این مرحله می

توانیم علامت مقدار تکین تخمین زده شـده را تعیـین نمـاییم. 
  وانتومی این مقاله به صورت زیر می باشد. الگوریتم تمام ک

از آنجایی که در الگوریتم پیشنهادي ماتریس ورودي بـا روش 
گردد، بنابراین حالت ورودي الگوریتم برابر بیان شده هرمیتی می

⟨ܾ|با  = ∑ خواهد بود. در ادامه به تحلیل خطاي باند  ௜⟩௜ୀଵݒ|௜ߚ

  حاسباتی آن خواهیم پرداخت.خروجی الگوریتم و پیچیدگی م

  کوانتومی تمام الگوریتم ):2( الگوریتم
ܹو  ௜ ،ܾ௜ܣورودي ها:           ماتریس  = ܴ௘ିଵ  

௡ܣ = ௜ܣ௜்ܹܣ , ܾ௜ =  ௜்ܹܾ௜ܣ

ܣ = ൤0 ௡்ܣ
௡ܣ 0 ൨ , ܾ = ቂܾ௡0 ቃ ݔ, = ൤0ݔ௡

൨.  

⟨ܾ|نتومی حالت کوا -1 = ∑ ௜⟩௜ୀଵݒ|௜ߚ = |߰ଵ⟩  را با استفاده
 آماده کنید. ]21[از روش 

ܣو  ܣبر روي  -2 + انجام شود. بنابراین  SVEروش  ܫߙ
 حالت سیستم در این مرحله به صورت زیر خواهد بود. 

|߰ଶ⟩ = ෍ߚ௜
௜

෤௜ߪ||෤௜|⟩஻ߪ||⟨௜ݒ| +  ஼⟨|ߙ

یک رجیستر کمکی اضافه نمایید و در صورتی که مقدار  -3
کرده و  1بود آن را  Cبزرگتر از مقدار رجیستر  Bرجیستر 

 گیت فاز شرطی را اجرا نمایید. بنابراین داریم:

|߰ଷ⟩ = ෍(−1)௩೔ߚ௜
௜

෤௜ߪ||෤௜|⟩஻ߪ||⟨௜ݒ| +  ௜⟩஽ݒ|஼⟨|ߙ

انجام  C,Dفرآیند عدم محاسبه را بر روي رجیسترهاي  -4
بود یک کیوبیت  Tبزرگتر از  Bدهید. اگر مقدار رجیستر 

اضافه کرده و چرخش کنترلی به حالت  ⟨0|کمکی با مقدار 
( ଵ
ଶ఑ఙ෥೔

|1⟩ + ට1− ଵ
ସ఑మఙ෥೔

మ بنابراین حالت  انجام گردد. (⟨0|
 رحله به صورت زیر است.سیستم در این م

|߰ସ⟩ = ෍(−1)௩೔ߚ௜|ݒ௜⟩||ߪ෤௜|⟩஻(
1

෤௜ߪߢ2
|1⟩ + ඨ1 −

1
෤௜ଶߪଶߢ4

|0⟩)
௞

௜ୀଵ

 

  انجام گردد.  Bفرآیند عدم محاسبه براي رجیستر  -5

|߰ହ⟩ = ෍(−1)௩೔ߚ௜|ݒ௜⟩(
1

෤௜ߪߢ2
|1⟩ + ඨ1 −

1
෤௜ଶߪଶߢ4

|0⟩)
௞

௜ୀଵ

 

انجام دهید و  ⟨1|روش تقویت دامنه را بر روي حالت  -6
⟨ݔ|سپس آن (یعنی  = ∑ (−1)௩೔ߚ௜(

ଵ
ଶ఑ఙ෥೔

௜⟩௞ݒ|(
௜ୀଵ را اندازه (

 گیري نمایید.

⟨ݔ|پس از متناسب سازي پارامترهاي واقعی برابر با  -7 =

∑ (−1)௩೔ߚ௜(
ଵ
ఙ෥೔

௜⟩௞ݒ|(
௜ୀଵ .خواهند بود 

  (تخمین پارامترها) ⟨ݔ|خروجی 

  تحلیل باند خطاي خروجی. 3.1.1

گردد، حالت خروجی برابـر مشاهده می ⟨1|وقتی  6در مرحله 
⟨෤ݔ|با  = ∑ ఉ೔

ఙ෥೔
௞
௜ୀଵ یحات اول این بخش باشد. طبق توضمی ⟨௜ݒ|
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⟨∗ݔ|حالت واقعی برابر با  = ∑ ఉ೔
ఙ೔

௞
௜ୀଵ خواهد بود. بنابراین  ⟨௜ݒ|

 داریم:

)15(  

෤ݔ‖ − ଶଶ‖∗ݔ = ෍(
௜ߚ
෤௜ߪ

௞

௜ୀଵ

−
௜ߚ
௜ߪ

)ଶ

= ෍
௜ߚ
ଶ

௜ଶߪ
(1

௞

௜ୀଵ

−
௜ߪ
෤௜ߪ

)ଶ

= ෍
௜ߚ
ଶ

௜ଶߪ
ቆ

෤௜ߪ) − ௜)ଶߪ

௜ଶߪ
ቇ .

௞

௜ୀଵ

 

෤௜ߪ‖، 2با توجه به قضیه  − ‖௜ߪ ≤ خواهد بود. همچنین  ி‖ܣ‖ߜ
෤௜ߪالگوریتم،  4با توجه به شرط مرحله  > باشند. بنابراین می ܶ

  آید:مییک کران بالا براي رابطه فوق به صورت زیر بدست 

)16(  ෍
௜ߚ
ଶ

௜ଶߪ
ቆ

෤௜ߪ) − ௜)ଶߪ

௜ଶߪ
ቇ

௞

௜ୀଵ

≤ ቆ
ி‖ܣ‖ߜ
ܶ

ቇ
ଶ

. 

ܶ  هاي مناسب، یکی از انتخاب]20[طبق مرجع  = ଵ
ଶ఑

 باشد.می 
  با این انتخاب داریم:

෤ݔ‖  )17( − ଶଶ‖∗ݔ ≤ ଶᇣᇧᇧᇤᇧᇧᇥߢிଶ‖ܣ‖ଶߜ4
ఌమ

 .ଶଶ‖∗ݔ‖

توان خطاي بانـد می ߜبنابراین با انتخاب مناسب پارامتر دقت 
  خروجی را در محدوده مناسبی قرار داد.

  تحلیل پیچیدگی محاسباتی. 3.1.2

، حالـت ]21[توان با بکارگیري مراحـل مرجـع می 1 مرحلهدر 
⟨ܾ|کوانتومی  = ∑ ௜⟩௜ୀଵݒ|௜ߚ = | ଵ߰⟩ مود. پیچیدگی را ایجاد ن

 2باشد. در مرحله می ((݊)log)ܱمحاسباتی این مرحله از مرتبه 
از  QSVE، پیچیدگی محاسـباتی روش ]19[با توجه به مرجع 

، با انتخاب 6خواهد بود. در مرحله  (ߜ/log(݊ଶ)ݕ݈݋݌)ܱمرتبه 
ܶ = ଵ

ଶ఑
ــت   ــال اصــلی مشــاهده حال ــا  ⟨1|احتم ــر ب ݌براب =

∑ ఉ೔
మ

ସ఑మఙ෥మ೔௜ ߟباشد. با در نظر گرفتن می = ∑ ఉ೔
మ

ఙ෥೔
మ

௞
௜ୀଵ :داریم 

݌  )18( = ෍
௜ଶߚ

෤ଶ௜ߪଶߢ4

௞

௜ୀଵ

=
1

ଶߢ4
෍

௜ଶߚ

෤௜ଶߪ

௞

௜ୀଵ

=
1

ଶߢ4  ߟ

ଶߝبل همچنین مقدار بدست آمده براي باند خطا در قسمت ق =

ߟباشد. اگر می ଶߢிଶ‖ܣ‖ଶߜ4 ≥ ఌమ

఑మ
݌باشد آنگاه   ≥ ఌమ

ସ఑ర
خواهد  

براي تقویـت دامنـه و رسـاندن  ]20[بود. بنابراین طبق مرجع 
درصد) نیاز است کـه مراحـل  99احتمال به یک مقدار ثابت (

ــه تعــداد  ݌/ඥ1قبلــی ب = ــابراین تکــرار گــردد (ߝ/ଶߢ)ܱ . بن
ــاریتمی  ــه لگ ــوریتم از مرتب ــی الگ ــباتی کل ــدگی محاس پیچی

((ߝ/ଶߢ)(ߜ/log(݊ଶ)ݕ݈݋݌))ܱ = ܱ(఑௣௢௟௬୪୭୥(௡మ)
ఋమ‖஺‖ಷ

خواهــــد  (
  بود.

  هاي مختلفمقایسه بین روش. 3.1.3

پیچیــدگی محاسباتی(ســرعت الگــوریتم)، )، 1(جــدول در 
سازي و کاربرد زمان واقعی پیادههاي مختلف، نحوه محدودیت

رایـج کلاسـیک و  هاي پیشـنهادي مقالـه بـا چنـد روشروش
ــومی مقایســه شــده اســت. روش کلاســیک ــومی -کوانت کوانت

داراي  1پیشنهادي به علت انجام محاسبات کلاسیک در مرحله 
 هـايباشد. امـا در مقایسـه بـا روشپیچیدگی نسبتا زیادي می

ی داراي پیچیـدگی کمتـري کلاسیک همچون تجزیـه چولسـک
است. روش تمام کوانتومی پیشنهادي این مقاله در مقایسـه بـا 

هاي هاي دیگر داراي پیچیدگی مناسب و شامل محدودیتروش
در  1باشد. همچنین با توجـه بـه اسـتفاده از قضـیه کمتري می

ساخت ورودي الگوریتم، پارامترهاي تخمین زده شده در هر دو 
، هر )1(بایاس نخواهند بود. طبق جدول  روش پیشنهادي داراي

سـازي آسـان و کـاربرد زمـان دو روش پیشنهادي از نظر پیاده
هـا واقعی داراي عملکرد قابل قبولی در مقایسه با دیگـر روش

هاي پیشنهادي باشند. با توجه به توضیحات داده شده روشمی
هاي کمتري نسبت بـه سـایر این مقاله در حالی که محدودیت

ها دارند، پیچیدگی محاسباتی آنها قابـل قبـول بـوده و از روش
سازي آسان و کاربرد زمـان واقعـی داراي عملکـرد لحاظ پیاده
  باشند. مناسبی می

 سازيشبیه. 4

-سازي الگوریتم کلاسیکدر این قسمت دو نمونه مثال از شبیه
از  هـاکوانتومی پیشنهادي ارائه خواهد شد. براي حل ایـن مثال

سازي الگوریتمکنیم. براي شبیهاستفاده می 2گل کلابمحیط گو
                                                             
2 Google Colab 
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در ایـن  QISKITهاي کوانتومی در این محیط باید ابتدا پکیج 
 با کار يبرا باز منبع افزار نرم کی QISKITمحیط نصب گردد. 

 هـاتمیالگور و هاپالس مدارها، سطح در یکوانتوم يوترهایکامپ
 يدســتکار و تســاخ يبــرا ییابزارهــاافــزار ایــن نرم .اســت
 هیـاول يهانمونـه يرو بـر هاآن ياجرا و یکوانتوم يهابرنامه

ــتگاه ــوم يهادس ــ IBM Quantum Experience)( یکوانت  ای
 از افـزارنرم نیا. کندیم ارائه کوانتومی انهیرا کی يسازهاهیشب

 تواندیم و کندیم يرویپ یکوانتوم محاسبات يبرا يمدار مدل
 يهاتیوبیک از حاضر حال در( ینتومکوا افزار سخت هر يبرا

 .شود استفاده) کندیم یبانیپشت  افتاده دام به يها ونی و ابررسانا
افزار باید از زبان پایتون سازي و آنالیز مدار در این نرمبراي شبیه

 4ساده که نیـاز بـه  مسالهاستفاده کرد. ابتدا به عنوان مثال یک 
هاي کنیم که ماتریسرض میگیریم. فکیوبیت دارد را در نظر می

  داده به الگوریتم کوانتومی به صورت زیر خواهند بود:

ܣ  )19( = ൦
1 −

1
3

−
1
3 1

൪ ,     |ܾ⟩ = ቂ10ቃ. 

  مختلف هايروش مقایسه ):1( جدول
  کاربرد زمان واقعی  سازيپیاده محدودیت ها پیچیدگی روش

]12[ ܱ(
(݊)ଶlogݏଶߢ

ߝ   دارد متوسط تنک بودن، خوش حالت بودن، نهرمیتی بود (

]11[ ܱ(
(݊)ଶlogݏଷߢ

ଶߝ   دارد متوسط تنک بودن، خوش حالت بودن، هرمیتی بودن (

]14[ ܱ(
log(݊ଶ)ݕ݈݋݌ݎ√ଶߢ

ߝ   دارد متوسط  ندارد (

  ندارد  آسان ندارد (ଷ݊)ܱ روش تجزیه چولسکی(کلاسیک)

  ندارد  آسان تنک بودن، خوش حالت بودن (݊ݏߢ√)ܱ ک)(کلاسی CGروش 

(݊)ଶ(log݊)ܱ کوانتومی- روش پیشنهادي کلاسیک +   ندارد  متوسط ندارد ((ݎ

)ܱ روش پیشنهادي تمام کوانتومی
log(݊ଶ)ݕ݈݋݌ߢ
ி‖ܣ‖ଶߜ

  دارد متوسط ندارد (
  

و در نهایت براي  ⟨ܾ|در این مثال از یک کیوبیت براي نمایش 
سازي دو مقدار ویژه و و از دو کیوبیت براي ذخیره ⟨ݔ|نمایش 

از یک کیوبیت به عنوان کیوبیت کمکی استفاده خـواهیم کـرد. 
کنـیم تـا بتـوانیم یـک نمـایش ابتدا مقادیر ویژه را محاسبه می

دودویی دقیق از مقادیر ویژه مقیاس شده در رجیستر را انتخاب 
دانیم که براي اجراي الگوریتم نیـازي بـه ن حال، میکنیم. با ای

  دانش قبلی از مقادیر ویژه نیست. بنابراین داریم:

ଵߣ  )20( =
2
3 ଶߣ, =

4
3. 

ఒೕ௧در مرحله تخمین فاز خروجی به صورت دودویی و به فرم 

ଶగ
 

ݐخواهد بود. بنابراین بـا تنظـیم  = .ߨ2 ଷ
଼

، تخمـین فـاز داراي 
ఒభ௧ی خروج

ଶగ
= ଵ

ସ
, ఒమ௧
ଶగ

= ଵ
ଶ

خواهد بود که به ترتیب بـه فـرم   
⟨ଵݑ|شود. بردارهاي ویژه نیز برابر با نوشته می ⟨01|و  ⟨10| =

ଵ
√ଶ
ቀ1
−1ቁ , ⟨ଶݑ| = ଵ

√ଶ
ቀ1

1ቁ نیز در پایـه  ⟨ܾ|ماتریس  باشند.می
⟨ܾ|بـه صـورت  ܣویژه مـاتریس  = ∑ ଵ

√ଶ
ଶ
௝ୀଵ หݑ௝ൿ  نشـان داده

شود. بنابراین حالت سیستم در مراحل مختلف الگوریتم بـه می
  صورت زیر خواهد بود.

⟨ܾ|هاي کوانتومی:  . آماده سازي حالت1 = |0⟩. 

ଵ. پس از تخمین فاز داریم:  2
√ଶ

⟨ଵݑ|⟨01| + ଵ
√ଶ

  .⟨ଶݑ|⟨10|
ܥکنترلی با تنظیم  . در مرحله چرخش3 = ଵ

଼
  داریم: 

1
√2

⟨ଵݑ|⟨01| ቌඨ1 −
(1/8)ଶ

(1/4)ଶ
|0⟩ +

1/8
1/4

|1⟩ቍ

+
1
√2

⟨ଶݑ|⟨10| ቌඨ1 −
(1/8)ଶ

(1/2)ଶ
|0⟩ +

1/8
1/2

|1⟩ቍ

=
1
√2

⟨ଵݑ|⟨01| ቌඨ1 −
1
4

|0⟩ +
1
2

|1⟩ቍ

+
1
√2

⟨ଶݑ|⟨10| ቌඨ1 −
1

16
|0⟩ +

1
4

|1⟩ቍ. 
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  . بعد از اعمال عکس تخمین فاز داریم:4

1
√2

−ଵ⟩ቌඨ1ݑ|⟨00|
1
4

|0⟩ +
1
2

|1⟩ቍ

+
1
√2

−ଶ⟩ቌඨ1ݑ|⟨00|
1

16
|0⟩ +

1
4

|1⟩ቍ. 

  داریم: ⟨1|گیري کیوبیت کمکی در حالت با اندازه
1
√2

⟨ଵݑ|⟨00| ቀ
1
2 |1⟩ቁ + 1

√2
⟨ଶݑ|⟨00| ቀ

1
4 |1⟩ቁ

ට 5
32

. 

  با دقت در رابطه بالا داریم:
1

2√2
⟨ଵݑ| + 1

4√2
⟨ଶݑ|

ඥ5/32
=

⟨ݔ|
 .‖ݔ‖

را بدست  ⟨ݔ|توان نُرم بنابراین بدون استفاده از گیت اضافی می
  د.باشدر کیوبیت کمکی می 1آورد که احتمال مشاهده 

(⟨1|)݌ = ൬
1

2√2
൰
ଶ

+ ൬
1

4√2
൰
ଶ

=
5

32 =  ଶ‖ݔ‖

) برابر ⟨ݔ|لازم به ذکر است که خروجی نهایی الگوریتم (جواب 
  با

൮

1
2√2

+⟨ଵݑ| 1
4√2

⟨ଶݑ|

ඥ5/32
൲ . ൬

1
8 ×

3
8
൰ = ቀ1.125

0.375ቁ 

تر آشـنایی بیشـ قسمت پیوست مقاله به منظـوردر  خواهد بود.
، کـدهاي QISKITاز  سازي با استفادهخوانندگان با نحوه شبیه

سازي و توضیحات مربوطه به زبان پایتون قرار داده شـده شبیه
رگرسیون خطـی بـا اسـتفاده از  مسالهاست. در مثال دوم یک 
در این قسمت مدل در نظر گرفته  گردد.روش پیشنهادي حل می

  باشد:شده براي سیستم به صورت زیر می

௜ݕ  )21( = ଴ߚ + ଵݔଵߚ +⋯+ ௜௉ݔ௉ߚ + ௜ߝ = ߚ௜்ݔ + ௜ߝ . 

کنیم مجموعـه به منظور بررسی الگوریتم پیشنهادي فرض مـی
  باشد.پارامتري) به صورت زیر می 4برداري شده (داده نمونه

൜−
1
8

+
1

8√2
,−√2,

1
√2

,−
1
2ൠ

, ൜
3
8
−

3
8√2

,−√2,−
1
√2

,
1
2ൠ

,   

൜−
1
8
−

1
8√2

,√2,−
1
√2

,−
1
2ൠ

, ൜
3
8

+
3

8√2
,√2,

1
√2

,
1
2ൠ

 

)22(  

سیستم خطی به فرم زیر نمایش داده  مسالههاي با توجه به داده
  شود.می

)23(  

଴ߚ − ଵߚ2√ +
1
√2

ଶߚ −
1
ଷߚ2 = −

1
8 +

1
8√2

 

଴ߚ − ଵߚ2√ −
1
√2

ଶߚ +
1
ଷߚ2 =

3
8−

3
8√2

 

଴ߚ + ଵߚ2√ −
1
√2

ଶߚ −
1
ଷߚ2 = −

1
8−

1
8√2

 

଴ߚ + ଵߚ2√ +
1
√2

ଶߚ +
1
ଷߚ2 =

3
8 +

3
8√2

 

  سیستم فوق به فرم ماتریسی داراي نمایش زیر است:

)24(  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−√2 1

1
√2

−
1
2

−√2 1 −
1
√2

1
2

−√2 −1
1
√2

1
2

−√2 1
1
√2

1
2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

൦

଴ߚ
ଵߚ
ଶߚ
ଷߚ

൪ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

1
8 +

1
8√2

3
8 −

3
8√2

1
8 +

1
8√2

3
8 +

3
8√2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

ݔܣ در حالت کلی به صورت مسالهاین  = شود. نشان داده می ܾ
هاي ورودي به الگـوریتم (شـرط هرمیتـی ماتریسبراي ایجاد 

ݔܣ்ܣبودن)، رابطه  =  ܣ்ܣ گیریم. بنابراینرا در نظر می ்ܾܣ
شوند و هاي الگوریتم در نظر گرفته میبه عنوان ورودي ்ܾܣ و

  هاي الگوریتم به صورت زیر خواهند بود.ورودي

ܣ்ܣ  )25( =
1
4
൦

15 9 5 −3
9 15 3 −5
5 3 15 −9

−3 −5 −9 15

൪ ்ܾܣ, =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1
2
1
2
1
2
1
2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

ଵߣ ویژهفوق یک ماتریس هرمیتی با مقادیر  ماتریس = ଷߣ، 1 =

ଷߣ، 2 = ସߣو  4 = هـا بـه باشد. بردارهاي ویژه متناظر آنیم 8
 باشد.صورت زیر می
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)26(  
⟨ଵݑ| = −|00⟩ − |01⟩ − |10⟩ + |11⟩ 
⟨ଶݑ| = |00⟩ + |01⟩ − |10⟩ + |11⟩ 
⟨ଷݑ| = |00⟩ − |01⟩ + |10⟩ + |11⟩ 
⟨ସݑ| = −|00⟩ + |01⟩ + |10⟩ + |11⟩ 

ܾ همچنین = ቂଵ
ଶ

 ଵ
ଶ

 ଵ
ଶ

 ଵ
ଶ
ቃ
∑ توان به صـورترا می ் หݑ୨ൿସ

௝ୀଵ  بـا
௝ߚ ضریب = ଵ

ଶ
⟨ܾ| بـه صـورت ܾ ورودينوشت. بنابراین   =

ଵ
ଶ

|00⟩ + ଵ
ଶ

|01⟩ + ଵ
ଶ

|10⟩ + ଵ
ଶ

ـــان می ⟨11| ـــدار بی ـــردد. م گ
نشـان داده شـده  )1(فوق در شکل  مسالهپیشنهادي براي حل 

ܷ است. مرحله تخمین فاز با = exp (݅16/ݐܣ) شود انجام می
  باشد.) می27که خروجی آن به صورت رابطه (

)27(  

1
2

|0001⟩஼|ݑଵ⟩
ூ +

1
2

|0010⟩஼|ݑଶ⟩ூ

+
1
2

|0100⟩஼|ݑଷ⟩ூ

+
1
2

|1000⟩஼|ݑସ⟩ூ 

∑ این رابطه معادل با ௝ேߚ
௝ୀଵ หݑ୨ൿ

ூ ฬఒണ
෪௧బ
ଶగ
඀ ݐ (بـا فـرض଴ = ) ߨ2

کیـوبیتی  4مثال به علت  باشد. لازم به ذکر است که در اینمی
หλ఩෩ൿ بودن رجیستر ساعت، = หλ୨ൿ ܥ باشد. با انتخابمی = ଼గ

ଶೝ
 ،
ــورت ــه ص ــی ب ــی خروج ــرخش کنترل ــه چ ــس از مرحل  پ

ଵ
√ଷସ଴

(−|00⟩ + 7|01⟩ + 11|10⟩ + ــود.   (⟨11|13 خواهــد ب

ــلی  ــواب اص ــا ج ــب ب ــی متناس ــن خروج ــالهای ــی مس  یعن
ଵ
ଷଶ

باشد زیرا ضرب داخلی آنها برابـر بـا می ்[13  11  7  1−]
  باشد.یک می

 QISKIT Aerسـازي مـدار فـوق از در این قسمت براي شبیه

QasmSimulator Backend  استفاده شده است. همچنین براي
ܷپیاده سازي اپراتورهـاي یکـانی  = exp (݅16/ݐܣ) از روش 

GLOA  د کـه شو. این روش سبب می]23[استفاده شده است
تر تجزیـه شـده و هاي یکـانی سـادهاپراتور مورد نظر به گیت

تر گردد. از آنجایی که الگـوریتم کوانتـومی سازي آن سادهپیاده
سـاز باشد خروجی بدست آمده در شبیهمورد نظر احتمالی می

QISKIT  نمودار  )2(خواهد بود. در شکل  )2(به صورت شکل
بات کلاسـیک) و آبی رنگ معادل با خروجـی اصـلی (محاسـ

نمودار قرمز رنگ معادل با خروجـی بدسـت آمـده حاصـل از 
باشد. همانطور کـه مشـخص الگوریتم کوانتومی پیشنهادي می

است. اعداد بدست آمده نسبت به اعداد واقعی داراي مقدار خطا 
در تخمــین  GLOAباشــند کــه علــت آن اســتفاده از روش می

  باشد.اپراتورهاي یکانی مرحله تخمین فاز می

  
ࢌ شکل این در .مساله حل براي پیشنهادي مدار ):1( شکل = ࣎ و (૚૟/࢚࡭࢏) ܘܠ܍ = ࣊

૛࢘
  باشد.می  

  گیري. نتیجه5
حـداقل  مسـالهدر این مقاله از محاسبات کوانتومی براي حـل 

در شناسـایی سیسـتم اسـتفاده GLS مربعات تعمیم داده شـده 
بـرخلاف روش پایـه حـداقل  هاي پیشنهاديگردید. در روش

، نیاز نیست که مـاتریس داده هرمیتـی وخـوش HHLمربعات 
تـوان در ها میحالت باشد. همچنین با بکارگیري این الگوریتم

حضور نویز رنگی (به شرط داشـتن مـاتریس همبسـتگی) بـه 
تخمین بدون بایاس نویز دست یافت. روش پیشنهادي ترکیبی 

و  ((݊) ଶlog݊)ܱی از مرتبــه مقالــه داراي پیچیــدگی محاســبات
 ((݊)݃݋݈ݕ݈݋݌)ܱروش تمــام کوانتــومی پیشــنهادي از مرتبــه 

باشـد. ایـن در حـالی اسـت کـه هاي ورودي مینسبت به داده
 (ଷ݊)ܱمعمــول حــل حــداقل مربعــات از مرتبــه   هــايروش

باشند. در ایـن مقالـه روش پیشـنهادي ترکیبـی بـه منظـور می
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شـرکت   QISKITعملی بر روي محـیط  آزمون سازي وشبیه
IBM و  هاي پیشنهاديسازي شده است. مقایسه بین روشپیاده
هـاي هاي رایج کلاسیک و کوانتومی نشان داد کـه روشروش

هـا سـبب پیشنهادي مقاله علاوه بر داشتن کمترین محـدودیت
کاهش بار محاسباتی و افزایش سرعت در حل مسائل شناسایی 

  گردند.حداقل مربعات خطا میمبتنی بر 
Qiskit Simulation_Sample Output: 
Predicted solution: 
[-1 7 11 13] 
Simulated experiment solution: 
[-0.8425 6.9604 10.9980 13.0341] 
Eroor: 0.1660  

  
  QISKIT با سازيشبیه در آمده دست هب خروجی ):2( شکل

از کوانتومی سدر شبیه مسالهسازي پیادهپیوست. 
QISKIT  

ساز کوانتومی، در شبیه 4 بخش در شده بیان اول مساله حل رايب
شود. روي محیط گوگل کلاب نصب می بر QISKITابتدا پکیج 

و نتیجـه الگـوریتم بـه صـورت زیـر  مسالههاي سپس ورودي
  گردد.تعریف می

import numpy as np 
from linear_solvers import NumPylinearSolver, HHL 
matrix = np.array( [1,-1/3], [-1/3,1] ) 
vector = np.array ( [1,0] ) 
naïve_hhl_solution = HHL().solve(matrix, vector)  

کلاسیک حل  شکلرا به  الاب مسالهبا استفاده از دستور زیر ابتدا 
  کنیم.می

classical_solution = NumPylinearSolver().solve(matrix, 
vector) 

print('classical state :', classical_solution.state) 
classical state: [1.125, 0.375]  

ایـن اسـت کـه  HHLیکی از مشـکلات الگـوریتم کوانتـومی 
به صورت یک حالت کوانتومی اسـت و بـراي  مسالهخروجی 

پـرس ܰ هاي حالت باید به تعدادبدست آوردن تک تک المان
یچیدگی محاسباتی الگوریتم به مقدار وجو انجام داد. بنابراین پ

افزایش خواهد یافت که ویژگی افزایش سرعت با ایـن  (ܰ)ܱ
رود. بنابراین معمولا خروجی الگوریتم به صورت کار از بین می

محاسبه  ⟨ݔ|ܯ|்ݔ⟩خواهد بود (براي مثال  ⟨ݔ|تابعی از حالت 
و بدون  3گردد). بنابراین خروجی الگوریتم به صورت سادهمی

خروجی ساده  )3(شود. با دستور شکل تغییر در نظر گرفته می
  گردد.الگوریتم مشاهده می

print ('naive state:') 
print (naive_hhl_solution.state) 

  
  الگوریتم ساده خروجی ):3( شکل

ه هاي کلاسیک و کوانتومی ببا استفاده از دستور زیر نُرم جواب
  آید.دست می

print ( 'classical Euclidean norm:', 
classical_solution.euclidean_norm) 
print ( 'naive Euclidean norm: ', 
naive_hhl_solution.euclidean_norm) 
classical Euclidean norm: 1.1858 
naive Euclidean norm: 1.1858 

براي رسیدن به جواب نهایی(جواب غیرساده همچون جـواب 
  کنیم.تورات زیر استفاده میکلاسیک) از دس

from qiskit.quantum_info import Statevector 
naive_sv = Statevector (naive_hhl_solution.state).data 
naive_full_vector = np.array ([naive_sv [16], naive_sv 
[17 ]) 
print ('naive raw solution vector : ' , naive_full_vector) 
                                                             
3 Naive 
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naive raw solution vector : [0.75+3.01063-16j   
0.25+3.3695-17j]  
def get_solution_vector (solution) 
solution_vector = Statevector 
(solution.state).data[16:18].real 
norm= solution.euclidean_norm 
return norm= *solution_vector / 
np.linalg.norm(solution_vector) 
print ('full naive solution vector:) 
get_solution_vector (naive_hhl_solution)) 
print ( 'classical state:' , classical_solution.state)  

ی الگوریتم کلاسـیک و نتیجه خروج ،دست آمدهه نتایج ب طبق
نیز کدهاي  )4(یکدیگر برابر شده است. در شکل  کوانتومی با

ار کوانتومی براي مثال مورد نظـر قـرار سازي مدمربوط به شبیه
  داده شده است.

from qiskit import QuantumRegister, QuantumCircuit  
import numpy as np 
t = 2   
NUM_QUBITS = 4  # Total number of qubits 
nb = 1  # Number of qubits representing the solution 
nl = 2  # Number of qubits representing the eigenvalues 
theta = 0  # Angle defining |b> 
a = 1  # Matrix diagonal 
b = -1/3  # Matrix off-diagonal 
# Initialize the quantum and classical registers 
qr = QuantumRegister(NUM_QUBITS) 
# Create a Quantum Circuit 
qc = QuantumCircuit(qr) 
qrb = qr[0:nb] 
qrl = qr[nb:nb+nl] 
qra = qr[nb+nl:nb+nl+1] 
# State preparation. 
qc.ry(2*theta, qrb[0]) 
# QPE with e^{iAt} 
for qu in qrl: 
qc.h(qu) 
qc.p(a*t, qrl[0]) 
qc.p(a*t*2, qrl[1]) 
qc.u(b*t, -np.pi/2, np.pi/2, qrb[0]) 
# Controlled e^{iAt} on \lambda_{1}: 

params=b*t 
qc.p(np.pi/2,qrb[0]) 
qc.cx(qrl[0],qrb[0]) 
qc.ry(params,qrb[0]) 
qc.cx(qrl[0],qrb[0]) 
qc.ry(-params,qrb[0]) 
qc.p(3*np.pi/2,qrb[0]) 
# Controlled e^{2iAt} on \lambda_{2}: 
params = b*t*2 
qc.p(np.pi/2,qrb[0]) 
qc.cx(qrl[1],qrb[0]) 
qc.ry(params,qrb[0]) 
qc.cx(qrl[1],qrb[0]) 
qc.ry(-params,qrb[0]) 
qc.p(3*np.pi/2,qrb[0]) 
# Inverse QFT 
qc.h(qrl[1]) 
qc.rz(-np.pi/4,qrl[1]) 
qc.cx(qrl[0],qrl[1]) 
qc.rz(np.pi/4,qrl[1]) 
qc.cx(qrl[0],qrl[1]) 
qc.rz(-np.pi/4,qrl[0]) 
qc.h(qrl[0]) 
# Eigenvalue rotation 
t1=(-np.pi +np.pi/3 - 2*np.arcsin(1/3))/4 
t2=(-np.pi -np.pi/3 + 2*np.arcsin(1/3))/4 
t3=(np.pi -np.pi/3 - 2*np.arcsin(1/3))/4 
t4=(np.pi +np.pi/3 + 2*np.arcsin(1/3))/4 
qc.cx(qrl[1],qra[0]) 
qc.ry(t1,qra[0]) 
qc.cx(qrl[0],qra[0]) 
qc.ry(t2,qra[0]) 
qc.cx(qrl[1],qra[0]) 
qc.ry(t3,qra[0]) 
qc.cx(qrl[0],qra[0]) 
qc.ry(t4,qra[0]) 
qc.measure_all() 
print(f"Depth: {qc.depth()}") 
print(f"CNOTS: {qc.count_ops()['cx']}") 
qc.draw(fold=-1)  

  
کوانتومی مدار رسم ):4( شکل
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