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Abstract: Anomaly detection in multivariate time series has been an active research area due to its widespread application in
various fields. Window-based methods are popular in the anomaly detection domain. These methods identify anomalous
windows rather than specific anomalous points, even if not all points within the window are anomalies. It is a critical
limitation of window-based methods. We propose an unsupervised sliding window-based model for detecting anomalies in
multivariate time series to address this limitation. Our model employs a sliding mechanism to iterate through the input time
series multiple times and utilizes a consensus function to aggregate different window anomaly scores. This mechanism
facilitates the discovery of more anomalous subsequences, even if they are not precisely confined within a specific window.
To evaluate the performance of the proposed method, several experiments on synthetic and real-world datasets, including
SKAB and MSL, with multiple indices. The results confirm the superiority of the proposed method. The method achieves an
Fscore of 0.902 for SKAB and 0.620 for MSL, which are twice as good as the results achieved by other methods.
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1.Introduction?

Time series has garnered significant attention across
various fields due to its generation by many applications
[1], [2]. Anomaly detection plays a crucial role in this
domain. Time series anomaly detection (TAD) aims to
identify unexpected changes within a given time series

[3].

A time series is a sequence of data points ordered
based on time intervals. The time series which records
one observation at each time point is referred to as
univariate time series. A multivariate time series records
multiple observations at a time. Time series anomalies
are data points that deviate from the regular patterns of
the series based on specific measures or models. These
anomalies can occur at individual time points (point
outliers) or subsequences of time points (collective or
contextual outliers) [4]. Anomalies may appear in one or
multiple channels of a multivariate time series.
Multivariate time series anomalies can reveal significant
events depending on the domain of application, such as
cyber-attacks on water distribution systems [5], traffic
control [6], disease outbreak detection [7], earth science
[8], etc.

Many outlier detection approaches have been
proposed, considering various data characteristics. TAD
algorithms commonly employ sliding window-based
mechanisms, where the input time series is divided into
segments known as sliding windows. Window
segmentation plays an important role in two aspects.
Firstly, dividing the time series into smaller
subsequences is advantageous for handling time-
consuming processes more efficiently. Secondly, in
online or stream applications where the complete time
series may not be available at the time of execution,
window-based methods offer the capability to operate
on existing buffered windows. This allows for real-time
analysis and detection of anomalies as new data
becomes available [9].

Window-based methods face several challenges:

(1) The method's effectiveness is strongly influenced
by the selected window size [10]. Employing wider
sliding windows generally results in higher TAD
accuracy [11], but it also leads to an increas in False
Positives (FP). On the other hand, smaller sliding
windows can reduce FP.

(2) Anomalies are considered anomalous windows,
meaning that all data points within an anomalous
window are treated as anomalies. This leads to an

increase in false positives and a decrease in true
negatives (TN).

False positives occur when the method incorrectly
identifies normal data points as anomalies. If an
anomalous window includes some normal data points
alongside the real anomalies, then the method would
identify those normal points as anomalies, leading to
an increase in false positives. Also, true negatives
represent the correct identification of normal data
points as non-anomalous. If all data points within an
anomalous window are labeled as anomalies, it's likely
that true negatives would decrease. This is because
any normal data points occurring within an anomalous
window would be incorrectly treated as anomalies,
causing a decrease in true negatives.

The specific effects on the performance of a TAD
method can indeed arise from the disadvantages
associated with an increase in FP and a decrease in
TN. More formally, the performance of a TAD
method is evaluated by several indices such as
accuracy, precision, and Fscore. From a mathematical
perspective, the accuracy value is directly influenced
by TN, as indicated by the formulas provided in
Section 4.2. Consequently, a decrease in TN results in
a corresponding decrease in the accuracy index.
Similarly, the precision index inversely correlates with
FP, meaning that an increase in FP leads to a reduction
in the precision value. Furthermore, a decrease in the
precision value contributes to a decline in the Fscore.

The motivation of this paper is to introduce a novel
anomaly detection method called ANNOTATE, which
incorporates the slid&cons mechanism to enhance the
overall performance of window-based TAD methods.
The slid&cons mechanism improves the performance
by decreasing FP and increasing TN. The mechanism
uses a sliding process and an anomaly score consensus
function. Before describing the proposed method in
detail, the following motivational examples and lemma
illustrate the problems and a potential solution.

Example 1: Figure l.a depicts one dimension of a
multivariate time series called Synthl, consisting of
1362 data points. Synthl contains a collective anomaly
of length 277 located at position 819. We assume the
existence of an ideal window-based TAD method,
denoted as iTAD. iTAD correctly identifies an
anomalous window.

The optimal window size for iTAD would be 277,
which aligns with the length of the collective anomaly.
Therefore, Synthl is divided into five windows, each
with a length of 277 (Figure 1.b). The collective
anomaly spans two of these windows, namely w, and



wg. Specifically, w, contains 12 anomalous points,
while wg contains 265 anomalous points. iTAD method
correctly identifies wg as the most anomalous window.
The resulting iTAD outcomes are as follows:
TP=265,FP =12, TN = 1073, and FN = 12 (Figure
1.b).

Ideally, an iTAD method should yield a Fscore of 1,
with FP = 0 and FN = 0. However, in this example, a
Fscore of 0.957 was obtained. This discrepancy is
attributed to the fact that twelve anomalous points were
not included in the identified anomalous window.
Consequently, FP =12 and FN = 12 were observed.
This example highlights that even when the ideal model
is aware of the correct anomalous window and correct
window size, it may not consistently yield optimal
results. Specifically, a TAD method that utilizes a
sliding window mechanism inherently introduces
conditions that can result in the occurrence of false
positives. These false positives, in turn, lead to a
decrease in the number of true negatives. In Section
4.3, we demonstrate that the proposed slid&cons
mechanism shows a significant improvement in
decreasing false positives, with a remarkable 79%
reduction, and a 2% increase in true negatives for this
particular example. [ ]

aFinput Time Serles”

b] Fscore=0.957, TP=265, TN=1073, FP=12, FN=12

Figure 1: Anomaly detection with iTAD on synthl

In the following, a basic theoretical calculation for
evaluating the performance of both iTAD and qTAD
algorithms is presented based on the example above.
The qTAD is a potential solution that involves a simple
sliding and consensus process.

Lemma 1: iTAD and qTAD performance evaluation

Let's assume that x(t) represents a time series that
contains a collective anomaly and iTAD is an ideal
window-based time series algorithm. iTAD identifies an
anomalous window correctly (W,,,,) with a window size
of w in x(t). Also, t is the time series length, and [ is
the length of a collective anomaly within the time series.
It is specified that at least half of the anomaly ( [/2) is
in W,,,(Figure 2 ). Other assumptions are in the
following.

o<l<sw
| x(t) = (X1, .0, Xt)
Wano = X, j+w—1) = (x-, ...,x]-+w_1),
1<j<j+w<st D
[ x(i+1—1) = (e, Xip1-1)»

l
\ 1Si<i+l£t,j£i+53w

(a)

(b)
Figure 2: The evaluation of (a) iTAD (b) qTAD

The evaluation results of iTAD algorithm are as
follows:

l l l
TP—E,FP—W—E,FN—E
l
Precision = % = ZL
[atw="ly W
iTAD = ! 1 2
Recall=%=§ ()
/2"'/2
1L
Fscore=2><2;” %zliwwzl+w

2w 2 2w

qTAD is a window-based TAD algorithm that operates
as follows:

1- iTAD find W,,,, on w?°
2-  Time series windows are slid by a value of g

where 0 < g < %and creates wt

3- iTAD find W,,,, on wt
4- Wano = Wanor N Wanoo

where W is windows set that has been slid i times.

The evaluation results of qTAD algorithm are in
Equation (3).
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The ratio of Fscorerap t0 Fscore;r,p is given by:
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The calculations of Equations (4) and (5)
demonstrate that the ratio is greater than one, indicating
the superiority of gTAD over iTAD.

[ |

Example 2 provides a numerical illustration of Lemma
1.

Example 2: Let be t=30,w=1[=10, q=35,
x(30) = (x4, ...,%35),  and  collective  anomaly
=x(5,14) = (xs, ..., X14). According to lemma 1, iTAD
operates on x(t) as follows:

w; = x(1,10) = (xq, ..., X10),

Wano1 = ¥(11,20) = (X1q, .-, X20)
TP=5FP=5FN=5

. - 5 5 1
recision = — = 10 = 2
iTAD = { Recall = i =1 (6)
'$ 5+5 2
1,101
_,.272_32_1
Fscore—2><1+1— 13
22
And qTAD with g = 5 operates on x(t) as follows:
w; = x(15,24) = (x15, ., X24) @)

Wano2 = X(5,14) = (Xl, "-'x14)'
Wano1 n Wano2 = (X11, -"'x14)
TP =4,FP =0,FN =6

4
Precision = 7 =1
Recall = 4 4 2
qrAD = { Rt = e =10 5
2 4
1X§ g 4
Fscore =2 X =5==
1+2 17
5 5
F : 8
score 7
P _ T _Z_ 114
Fscoregap 1 7
2

In the example, by employing iTAD, only data points
within identified anomalous windows are labeled as
anomalies. This approach may label neighboring
anomalous points, which do not precisely fall within the
identified anomalous windows, as normal points,
leading to an increase in false negatives (FN). In
addition, the sliding and consensus mechanism in gTAD
addresses this limitation by identifying anomalous
neighbors close to the identified anomalous windows.
This is achieved through multiple iterations of qTAD
execution and the aggregation of anomaly scores
assigned to data points. ®

Based on the preceding discussion, the sliding
mechanism in window-based methods can improve the
overall performance by decreasing FP and increasing
TN. In this paper, the proposed method utilizes a Base
TAD algorithm in an iterative manner on sliding
windows (slid&cons). The main idea of the slid&cons
mechanism is when a specific range of the time series
obtains high anomaly scores in multiple consecutive
sliding processes, the aggregation function assigns a
higher degree of anomaly to that window. In contrast,
for time points that consistently have low anomaly
scores, even if they occasionally achieve high anomaly
scores in a small number of slides, the aggregation
function assigns a final low anomaly score to them.

The proposed slid&cons mechanism effectively
leverages the aggregated results obtained from several
iterations to improve the overall performance of the
proposed method.

The main contributions of this paper can be
summarized as follows:

e Development of an unsupervised sliding window-

based anomaly detection method for multivariate
time series called ANNOTATE.

e Proposal of a novel slid&cons mechanism that

utilizes sliding windows and a consensus
aggregation technique to improve anomaly detection
performance by decreasing FP and increasing TN.



The paper is organized as follows. In Section 2,
window-based TAD  methods are briefly reviewed.
Section 3 describes the proposed method in detail.
Several experiments on some synthetic and real-world
datasets are presented in Section 4. Conclusions are

given in Section 5.

2.Related Works

Outlier detection in multivariate time series involves
diverse approaches, ranging from basic statistical
analyses and machine learning methods to advanced
deep learning techniques. The task of sliding window
segmentation is an essential part of these techniques.
Window-based methods are classified into two
categories: fixed-length and variable-length. Fixed-
length sliding windows are called Static Sliding
Window (SSW), while variable-length sliding windows
are known as Dynamic Sliding Window (DSW). The
SSW approach utilizes sliding windows of a
predetermined, fixed size, whereas the DSW approach
adapts the window size based on the characteristics of
the time series [12].

The segmentation process in TAD can be done in
two ways: Top-Down or Bottom-Up. Top-Down
algorithms recursively divide a time series into smaller
segments until a specific stop condition is met. Bottom-
Up algorithms start with the initial points of the input
time series and gradually add points until certain

conditions specified by the method are satisfied [13].

Bottom-Up methods can be applied to both online
and offline inputs, making them suitable for handling
streaming data and static datasets. Conversely, Top-
Down methods are better suited for time series inputs
that are not streaming or online, typically working
effectively with static or offline datasets where the
entire time series is available for analysis [13].

In TAD algorithms, a fixed-length sliding window is
the most common [3]. The main objective of these
algorithms is to approximate the optimal sliding window
size. The length of sliding windows is often determined
either by expert users or by employing brute-force
methods within the algorithms [14]. lIzakian et al.
employed a fixed-length window for detecting
anomalies. They utilized the fuzzy c-means clustering
algorithm to identify anomalies within the sliding
windows [15].

The window length influences the performance of
the SSW method. The window length is typically
determined based on the overall trend of the input time
series. While the window length should be a function of

data fluctuations, taking into account the varying
characteristics of the time series.

To enhance the performance of TAD models using
fixed-length windows, some studies have incorporated
additional steps into their models. Yin et al. conducted
research in the loT domain utilizing a deep
convolutional network. Their model employed a two-
stage sliding window approach during preprocessing. In
the first stage, the time series was divided into fixed-
size windows, and in the second stage, these windows
were further divided into smaller subsequences to
extract features [16].

As mentioned earlier, window-based TAD methods
classify all points within an anomalous window as
anomalies, potentially leading to increased FP.
Researchers have introduced an overlapping mechanism
that creates sliding windows with overlaps between
neighboring windows to address this. In reference [17],
the authors utilized overlapped windows to enhance the
efficiency  of their  proposed method for
multidimensional TAD.

Another solution is to employ a dynamic or adaptive
sliding window mechanism, which utilizes a specialized
algorithm to determine specific window lengths for each
window. Smrithy et al. employed a dynamic approach
with the Weighted Moving Average (WMA) method to
detect outliers in the healthcare domain. This algorithm
estimates the size of the subsequent sliding window by
evaluating the variance between the preceding sliding
window and the current sliding window [18].

In a study on road anomaly detection, the authors
introduced a dynamic sliding window mechanism. The
algorithm determines the length of windows using the
DSW method, which leverages vehicle speed.
Additionally, this method calculates a dynamic overlap
value for each window [12].

In recent times, researchers have employed deep
learning methods in the sliding window process. Baig et
al. worked on multivariate time series of data center
resources [19]. They proposed an adaptive sliding
window approach that utilizes a 4-layer MLP to
determine the length of each window dynamically.

Utilizing mathematical estimation methods is
another approach for time series segmentation.
Carmona-Poyato presented the optimal window
segmentation technique, OSTS, which employs the A*
algorithm to achieve efficient segmentation of time
series. This algorithm is employed to calculate optimal
polygonal approximations of the time series [20].



Yao et al. employed a dynamic sliding window
approach for anomaly detection in wireless networks
[21]. Their proposed method combines a basic window
size and historical information to determine the optimal
window size for streaming data. The dynamic model
operates by analyzing the continuous local fluctuations
within the data.

An adaptive sliding window method is proposed in
[11] to improve outlier detection efficiency. Farahani et
al. discovered the normal behavior of the input time
series using overlapped windows with a DSW
mechanism to cluster the data [22].

3.The Proposed Method

This section presents ANNOTATE, an unsupervised
sliding window-based TAD method for identifying
anomalies in multivariate time series. The method
utilizes a Base TAD model to detect anomalous
windows. To enhance the outcomes of the Base TAD
algorithm, the original time series is shifted multiple
times (slid), and Base TAD is rerun on each shifted
time series. The slid mechanism modifies the position
of points within windows by shifting the input time
series. This change leads to changes in the assignment
of anomaly score values. The assigned anomaly scores
are then aggregated using a consensus function (cons)
over multiple iterations. If a subsequence within
consistently acquires a high anomaly degree after
aggregating the scores, it is classified as an abnormal
subsequence.

An overview of the methods is shown in Figure 3.
The proposed model includes a main loop encompassing
segmentation, representation, anomaly scoring, and
slid&cons steps. The combination of these three steps,
namely segmentation, clustering representation, and
anomaly score calculation, is referred to as Base TAD.

The input time series is prepared in the pre-
processing step by detrending tasks. The pre-processed
time series is divided into fixed-length windows during
the segmentation step. These windows are then
transformed into a new form using a clustering
algorithm (0SCM) [23] in the representation step.
Anomaly scores are assigned to the transformed
windows in the next step by computing d-neighbor
distances. The main loop concludes with the sliding
mechanism, which slides the input time series by a
factor of q . The loop repeats n times, as illustrated in
Figure 4. The Cons function (Equation (2)) combines all
the anomaly scores generated in n iterations for time
series points and assigns new anomaly scores (AS).

The normality or abnormality status of points is
determined based on the computed AS. Algorithm 1
presents the pseudocode of the proposed method.
Additional details can be found in the subsequent
subsections.

3.1Preprocess

Assume that  x(t) = (xq,..,x,) represents a
multivariate time series of length ¢ in the preprocessing
step where x; = (xy;, X5, -, Xp;) denotes the ith point
of the series with p dimensions. Time series Ax(t —
1) = (Axy, ...,Ax,_;) is constructed where Ax; =
Xi4q — X;, U €[1,t — 1] (Line 3 of Algorithm 1).

3.2 Window Segmentation

In this step, m multivariate subsequences of length w
are generated. More formally, the time series Ax(t — 1)
is converted into a set of windows, W= = {w;, ..., w3}
where w; is the ith window in the sth iteration and
m = |(t — 1)/wl] (Line 9).

mput

Preprocess

s=0 Base TAD

A4

| Window Clustering Anomaly Score
Segmentation Representation Calculation

\! a I,"l \\‘s‘
Sliding Window 4—“’8 <n 4—

A4

Consensus Function

oultput
Figure 3: Overall scheme of the proposed TAD

Algorithm 1: Pseudo-code of ANNOTATE

Inputs: x(t) = (xy, ..., x;): Multivariate time series
w: Window size, k : The number of clusters
n : Maximum number of sliding steps
sp : Sliding percentage
Outputs: Labels time series points (0:Normal, 1:Abnormal)
tme|(t-1)/w]
q < Sp Xw
fori=1tot-1do
Ax; = Xipq — %;
end for
for s=0 ton do
start « s X q
Ax® « Ax(start,t)
9: W* « divide Ax® to m windows > WS ={w;, .., w3}
10:  CS « OSCM (WS, k) > C* ={cf,...c5}
11:  ASS « AS(C®) by Equation (8) > ASS = {as§, ..., as5}
12: end for

> Ax(t — 1) = {Axy, ..., Ax;,_q}
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13: fori=1to mdo

14: compute AST by Equation (9) 1> AST = {AST, ..., AS™}
15: end for

16. compute 7 by Equation (11)

17: compute Label(x]-) by Equation (10)

18: return Label

3.3 Clustering Representation

Each w},i € [0,m] is divided into k clusters utilizing a
clustering method. A modified version of optimal
clustering for sequential data (0SCM) is developed for
multivariate time series based on the OSC method [23].
An individual cluster is represented by its center point.
A set of cluster centers C* = {c{, ..., c;,} is formed in
Line 10, where ¢} is a set of k cluster centers in ith
sliding window and sth iteration.

3.4 Neighboring Distance as Anomaly Score

Given that a set of windows W* = {w;,...,wS5} and
cluster center set C* = {c{, ..., c;,} were constructed by
previous steps, the anomaly score set AS® =
{as,, ..., asy} is generated by Equation (8) (Line 11).
The anomaly score for the ith window in sth iteration,
s, is equal to the average of the distances from the d-
previous neighbors. For Algorithm 1, d = 2 is defined.

0, i=1
&5 il — eyl
|Z “ = 1<isd
{]:1 (8)
| EE Il a iz
j=1

where c;; is the center of jth cluster of the ith sliding
window, and k is the number of clusters.

3.5Sliding Window and Consensus Function
(slid&cons)

In this step, sliding windows are shifted n times with a
step size of g, as illustrated in Figure 4, generating sets
of WS where s € [1,n]. The clustering (described in
Subsection  3.3) and scoring  (described in
Subsection 3.4) phases are then performed on each W,
This results in anomaly score sets, AS* (Line 11). This
process constructs a specific set of anomaly scores is
AS; = {as}, ..., as]'} for ith window.

A consensus function defined by Equation (9) is
used to aggregate anomaly scores in AST (Line 14).

n

AST = Zexp(asf),i € [1,m] 9)

s=1

where AST is the aggregated anomaly score for the ith
window.

Anomalous points are detected by applying Equation
(20), which is implemented in Line 17 of the algorithm.

AST >+

1,
Label(x;) = {0 other

€[1,m],x;ew; (10

where 7 is the anomaly threshold, which is defined as
follows:

u = mean(A4S?h), i=1,23
o = std(AsD), i=1,23 (11)
T=u+o

where mean and std are the average and standard
deviation functions, respectively. Equation (11) used the
anomaly threshold computed in [24].

Figure 4: Sliding process

4.Experimental Studies

This section presents and discusses the experimental
results that demonstrate the effectiveness of the
proposed method. The evaluation of the proposed
algorithm involved comparing it against 12 existing
methods, which were implemented using the scikit-
learn?, AGOTS®’, and CUBOID* packages. The
proposed method was implemented in Python 3.8. The

2 https://scikit-learn.org
3 https://github.com/KDD-OpenSource/agots

* https://github.com/irl979/CUBOID



experiments were conducted on a computer with an
Intel(R) Core(TM) i7-7700HQ processor running at
2.80 GHz, equipped with 16.0 GB RAM, and operating
on Windows 10.

For all experiments, the proposed method was
executed with k = 3. The comparative methods were
evaluated using different window sizes (w). The
experiments with the best results are reported in this
section.

The following subsections introduce datasets used in
the experiments (subsection 4.1) and details the
performance indices employed for evaluation
(subsection 4.2). Furthermore, subsections 4.3,
and 4.4 describe and discuss two experiments conducted
to assess the performance of the proposed method.

4.1 Datasets

Experiments in this study utilized a combination of
synthetic and real-world multivariate time series
datasets. A brief overview of these datasets is provided
below.

e The synthetic dataset, AGOTS, consists of 150
multivariate time series that contain collective
anomalies. These anomalies can be categorized into
four types: extreme, shift, trend, and variance. The
dataset was generated using the AGOTS package5.
The time series have random lengths ranging from
1000 to 3500, and the length of collective anomalies
was randomly generated between 100 and 400 with a
seed value of 3. The collective anomalies were
inserted at random positions within the time series.

e MSL dataset comprises 27 spacecraft telemetry
multivariate signals obtained from NASA's Curiosity

Rover on Mars® [25].

e SKAB anomaly benchmark dataset includes 34 time
series with collective anomalies. These time series
were collected from a water system equipped with
sensors in a testbed” [26]. The dataset includes three
sub-datasets: other, valvel, and valve2.

For more detailed information about these datasets,
please refer to Table 1. On the table, Clctv stands for
"collective," and Num stands for "numerical."”

° https://github.com/KDD-OpenSource/agots
6 https://s3-us-west-2.amazonaws.com/telemanom
! https://github.com/waico/SKAB

Table 1: Summary of the datasets

w
[}
] = @

D = %5 H+ E i) E E § G ﬁ §
& 5 = o 8E ot 2 P ~
5 8 g§ 255 £8 § SE ¢
e <- g 2@ % kg a

<
AGOTS 150 244468 248.38 11.49 4 Clctv Num

SKAB 34 1101.74  389.44 3548 8 Clctv.  Num

MSL 27 2730.7 286.3 1.33 55  Clctv  Num

4.2 Performance Evaluation Criteria

The evaluation of anomaly detection methods
commonly employs performance criteria such as
Accuracy, Precision, Recall, and Fscore (Equation
(12)). These metrics are derived from the confusion
matrix, which includes True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative
(FN).

TP+TN
Acuracy = p TN Y FP + FN
... TP
Precision = TP+ FP
TP (12)
Recall = TP+—FN

Precision X Recall

Fscore =2 X —
Precision + Recall

Additionally, the method's performance is quantified
using the Area Under the Curve (AUC) of the receiver
operating characteristics (ROC). The ROC curve plots
the true positive rate (TPR) against the false positive
rate (FPR). The TPR is the percentage of actual
positives that are predicted as positive, and the FPR is
the percentage of actual negatives that are predicted as
positive. The AUC provides a summary of the ROC
curves, depicting the trade-off between true positives
and false positives. The AUC is a measure of the overall
performance of the method. A perfect method would
have an AUC of 1, while a random method would have
an AUC of 0.5.

In evaluating anomaly detection methods, Fscore and
AUC are considered the most crucial indices for
assessing performance. These metrics effectively
measure the method's performance in the TAD domain.

4.3 Visualization of Slid&cons
The efficiency of the proposed model is visualized in

this subsection. Time series Synthl and Synth2 were
selected from the synthetic dataset described in



subsection 4.1. An explanation of the window-based
method's problems on Synthl was given in the
Introduction section. The results of executing Base TAD
and ANNOTATE on Synthl and Synth2 time series are
presented in Figures 5, 6, and Table 2. Note that the
Base TAD method applied to Synthl in Section 1 is
iTAD, which is different from the Base TAD in the
proposed method. Therefore, the results of their
iterations are different. The parameters used in Base
TAD in the experiment are n=2 and k =3. For
Synthl, the parameter sp is set to 2%, and for Synth2,
the parameter sp is set to 1%.

Figure 5 illustrates the executions of Base TAD and
its two iterations on Synthl. The bottom graph of the
figure (Figure 5.e) shows the result of aggregated scores
from different runs of Base TAD using the cons
mechanism. It is evident that Base TAD identifies
different anomaly ranges in each iteration. However, the
red range in the last graph indicates that the anomalies
detected by the slid&cons mechanism are more
consistent with the true range of the anomaly. This
signifies an improvement in the performance of Base
TAD with the assistance of the slid&cons mechanism.

Furthermore, the numerical results in Table 2
support this superiority. The table reveals a 79%
improvement in false positives (decreasing from 24 to
5 and a 72% improvement in false negatives
(decreasing from 36 to 10) using the proposed
mechanism compared to the basic model. Additionally,
applying the slid&cons mechanism leads to a 10%
increase in true positives and a 2% increase in true
negatives in the Synth1 time series.

™

o Input Time Series
o) Facore= 0.891, TP=241, TN=106Z, FP=24, FH=35
< Fscore= 0,98, TP=265, TN=1086. FP=0, FN=11
d Ficore= 0,103, T9=28, TNaBao, FPaz37, FNa208™

ore=0.974, TP=267. TN=1081, FP=5, FN=0

Figure 5: Anomaly detection with slid&cons on Synthl

a) Input Time Series
b} Fscore= 0.347, TP=177, TN=2377, FP=450, FN=215
¢ Ficore= 0,503, TP=302, TN=2302, FP=325, FN=90

d) Facore= 0.769, TP=382, TN=2592, FF=235. FN=0

€ Ficore= 0.584, TP=302, TN=2486, FPZ341, FN=90

Figure 6: Anomaly detection with slid&cons on Synth2

Synth2 is a multivariate time series comprising four
variables and exhibiting a collective anomaly, as
depicted in Figure 6.a. Specifically, there is a collective
anomaly of length 392 located at position 2331 within
the time series. The total length of the time series is
3218.

Figure 6 shows the evaluation results of Base TAD
and ANNOTATE methods employing a window size of
627. By comparing the red range in Figure 6.b with
Figure 6.e, it becomes evident that the proposed
mechanism detects an anomaly range that aligns more
closely with the anomaly points in the time series. The
aggregation mechanism has adjusted the red range to
match the actual anomaly range, resulting in a more
consistent identification of anomalous points that
correspond to the true anomalies in the input time series.

The results presented in Table 2 demonstrate the
effectiveness of the proposed mechanism. The proposed
mechanism yields significant improvement by reducing
the false negative value by 58% from 215 to 90.
Moreover, there is a notable increase in true positives,
rising from 177 in Base TAD to 305 in ANNOTATE,
leading to a 41% enhancement in performance. The
table results also indicate improvements in other
performance parameters achieved by employing the
proposed mechanism.

Table 2: Evaluation results of Synthl and Synth2

Series Method Name TP TN FP FN
Name
Synthi Base TAD 241 1062 24 36
Y ANNOTATE 267 1081 5 10
Base TAD 177 2377 450 215
Synth2

ANNOTATE 302 2486 341 90




4.4 Effectiveness of the ANNOTATE

In this experiment, the overall performance of the
proposed method was evaluated on a synthetic and two
real-world datasets. The performance indices used in the
experiment were accuracy, precision, recall,
Fscore, and AUC. Comparative experiments were
conducted using unsupervised methods such as CBLOF
(cluster-based local outlier factor) [27], COF
(Connectivity-Based Outlier Factor) [28], HBOS
(Histogram-Based Outlier Score) [29], KNN (K-Nearest
Neighbors Detector) [30], LOF (Local Outlier Factor)
[31], MCD (Minimum Covariance Determinant) [32],
PAA (Piecewise Aggregate Approximation) [33], PCA
(Principal Component Analysis) [34], SOD (Subspace
Outlier Detection) [35], SOS (Stochastic Outlier
Selection) [36], and OCSVM (One-class SVM detector)
[37].

4.4.1 Synthetic Dataset Experiments

To test the performance of the proposed algorithm, the
AGOTS dataset is used in the experiment with sp =
10% and n = 4 parameters for ANNOTATE.

The results of performance indices are summarized
in Figure 7 and Table 3. The superior performance of
the proposed method is visually depicted in Figure 7,
where the ANNOTATE °s line plots appear at the top
compared to other methods.

Table 3 shows outputs of other approaches are poor.
MCD was the best competitive method with Fscore =
0.286 and AUC = 0.784. The proposed method with
Fscore = 0.509 and AUC = 0.910 shows significant
improvement over the others.

AGOTS

" e ANNOTATE
92 1 -CBLOF
081 COF
011 HBOS
% 1 s iFOrest
91 e KNN
04 1 e LOF
039 —MCD
02 1 e PA A
0.1 1 —PCA

’ Precision ‘ Recall Accuracy ' Fscore ' AUC E=uP

Figure 7: The performance indices' line plots for the AGOTS

dataset

4.4.2 Real-world Dataset Experiments

Two real-world multivariate time series, SKAB, and
MSL, were analyzed in the experiment to evaluate the

proposed. The proposed algorithm was applied to
SKAB with sp=1% and n=5, while for MSL, the
parameters used were sp=5% and n=3. The outcomes of
the SKAB and MSL experiments are presented in
Figures 8, 9, and Tables 4, and 5, respectively. Since
SKAB and MSL datasets are widely used, we present
their performance using box plots (Figures 8 and 9),
which offer additional statistical information about the
experimental results.

Based on the results presented in Table 4, the
proposed models demonstrate higher average values for
all performance indices on the SKAB dataset. The
average values for indices in the proposed models are as
follows:  precision = 0.906, recall= 0.915,
accuracy = 0.936, Fscore=0.902, and AUC= 0.957.

Furthermore, Figure 8 provides additional evidence
supporting these findings. The box plots of the
ANNOTATE are at the top of the other plots and are
also positioned closer to 1. This indicates that the
ANNOTATE model is effective in detecting anomalies.

Moreover, the box plots of the proposed model
include narrow interquartile ranges and small upper
whiskers, suggesting that the values of the indices
obtained for 75% of the SKAB time series are highly
concentrated. Additionally, the median values in the box
plots are closer to Q3, indicating that a significant
portion of the dataset (50%) achieves high performance
within the IQR range. These findings further indicate
the proposed model's stable behavior and high
efficiency.

In contrast, the box plots of the other competing
methods display larger interquartile ranges and whiskers
that extend over a wider range on both sides. Most of
these methods have Q3 values below 0.6, except for
accuracy, suggesting higher fluctuations and lower
overall performance.

The results of the experiments conducted on the
MSL dataset are visually and numerically presented in
Figure 9 and Table 5.

Table 5 indicates that the proposed model
achieves an average Fscore value of 0.620, which is the
highest among other methods for the MSL dataset. The
value denotes a significant improvement compared to
the second-best result obtained by the PAA method,
which scored only 0.279. The superiority of the
proposed method becomes evident in the Fscore box
plots, where the ANNOTATE plot demonstrates a lower
quartile value near 0.5. In contrast, the upper quartile is
below 0.5 for other methods.



Table 3: Performance evaluation of the AGOTS dataset

Method Precision Recall Accuracy Fscore AUC
ANNOTATE 0.637+0.30 0.811+0.20 0.892+0.11 0.654+0.22 0.852+0.17
CBLOF 0.243+0.26 0.425+0.34 0.751+0.18 0.258+0.23 0.668+0.19
COF 0.139+0.11 0.224+0.15 0.744+0.08 0.148+0.08 0.534+0.07
HBOS 0.230+0.23 0.415+0.36 0.739+0.18 0.233+0.20 0.685+0.20
iForest 0.128+0.17 0.136+0.25 0.832+0.09 0.097+0.14 0.691+0.18
KNN 0.248+0.17 0.511+0.33 0.757+0.10 0.292+0.18 0.730+0.19
LOF 0.131+0.10 0.240+0.18 0.729+0.10 0.145+0.09 0.525+0.09
MCD 0.281+0.30 0.460+0.43 0.810+0.13 0.286+0.29 0.784+0.21
PAA 0.141+0.14 0.497+0.46 0.682+0.11 0.212+0.21 0.596+0.20
PCA 0.097+0.18 0.155+.30 0.784+0.13 0.086+0.15 0.543+0.27
SOD 0.195+0.13 0.324+0.17 0.765+0.07 0.217+0.11 0.600+0.11
SOS 0.112+0.06 0.175+0.05 0.744+0.05 0.127+0.05 0.503+0.01
OCSVM 0.073+0.16 0.106+0.24 0.807+0.10 0.066+0.14 0.495+0.28

Table 4: Performance evaluation of the SKAB dataset

Methods Precision Recall Accuracy Fscore AUC
ANNOTATE 0.906+0.18 0.915+0.20 0.936+0.10 0.902+0.18 0.957+0.10
CBLOF 0.353+0.12 0.222+0.10 0.592+0.05 0.266+0.11 0.512+0.06
COF 0.370+0.10 0.174+0.07 0.604+0.04 0.231+0.08 0.508+0.04
HBOS 0.377+0.12 0.268+0.15 0.598+0.05 0.300+0.14 0.546+0.10
iForest 0.414+0.12 0.282+0.15 0.606+0.05 0.317+0.13 0.569+0.10
KNN 0.362+0.12 0.212+0.10 0.598+0.05 0.260+0.11 0.529+0.08
LOF 0.360+0.11 0.146+0.06 0.608+0.05 0.201+0.08 0.501+0.05
MCD 0.388+0.20 0.387+0.30 0.619+0.12 0.371+0.25 0.589+0.19
PAA 0.465+0.12 0.455+0.13 0.623+0.05 0.458+0.12 0.706+0.12
PCA 0.345+0.13 0.213+0.13 0.591+0.05 0.249+0.13 0.522+0.09
SOD 0.376+0.07 0.169+0.07 0.607+0.04 0.225+0.08 0.519+0.06
SOS 0.364+0.06 0.212+0.03 0.589+0.03 0.266+0.03 0.504+0.02
OCSVM 0.360+0.14 0.214+0.16 0.602+0.05 0.250+0.15 0.526+0.10

Table 5: Performance evaluation of the MSL dataset

Methods Precision Recall Accuracy Fscore AUC
ANNOTATE 0.574+0.30 0.881+0.18 0.891+0.13 0.620+0.25 0.889+0.16
CBLOF 0.163+0.14 0.264+0.16 0.775+0.12 0.168+0.11 0.638+0.13
COF 0.201+0.15 0.336+0.32 0.751+0.20 0.174+0.11 0.583+0.11
HBOS 0.156+0.13 0.350+0.25 0.738+0.16 0.183+0.11 0.595+0.13
iForest 0.163+0.14 0.299+0.16 0.748+0.14 0.179+0.11 0.608+0.12
KNN 0.225+0.12 0.278+0.29 0.794+0.19 0.171+0.11 0.612+0.12
LOF 0.183+0.15 0.163+0.18 0.826+0.14 0.126+0.12 0.567+0.07
MCD 0.191+0.20 0.304+0.34 0.761+0.22 0.154+0.16 0.630+0.16
PAA 0.235+0.31 0.509+0.42 0.715+0.13 0.279+0.29 0.659+0.19
PCA 0.150+0.14 0.214+0.16 0.765+0.18 0.137+0.10 0.595+0.13
SOD 0.258+0.20 0.078+0.11 0.866+0.13 0.093+0.09 0.527+0.05
SOS 0.000+0.00 0.000+0.00 0.880+0.13 0.000+0.00 0.500+0.00
OCSVM 0.170+0.16 0.375+0.26 0.740+0.17 0.195+0.16 0.608+0.16

Furthermore, the ANNOTATE with the largest
average value of recall = 0.881 and box plot with an



almost narrow IQR in a high range (0.75-1),
demonstrates that the proposed model successfully
enhances Recall by minimizing false negatives.

In general, the distributions of box plots for accuracy
are considerably high and close to one for all methods.
However, the proposed method with the median closer
to the upper quartile and small whiskers on both sides
indicates a negative skewness. These evidences imply
that the proposed model accurately detects anomalies in
this dataset and show the methods outperform.

Moreover, the superiority of ANNOTATE is clearly
evident in the precision index. The proposed method
attained the highest value of 0.574, significantly higher
than the values of the other methods (Table 5). This
superiority is further supported by the corresponding
box plot in Figure 9.
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Overall, the consistent results from both the tables
and the box plots confirm the superior performance and
stability of the proposed model compared to the
competing methods. A careful examination of Tables 3,
4, and 5 reveals that the standard deviations associated
with the proposed method are consistently below 0.2,
indicating a high level of consistency and reliability.
Moreover, when observing the ANNOTATE bhox plots
depicted in Figures 8 and 9, it becomes evident that the
their interquartile ranges usually are narrow and their
upper whiskers are relatively small. These box plot
characteristics further validate the stable manner in
which the proposed model operates, reinforcing its
reliability and robustness.

5.Conclusion

This paper introduced a novel unsupervised multivariate
TAD method called ANNOTATE. ANNOTATE
utilizes a window-based approach, employing a sliding
and consensus mechanism (slid&cons) to combine
anomaly scores from multiple executions of the method
enhancing the final results. Several synthetic and real-
world datasets are used to demonstrate the effectiveness
of the proposed approach. Experiments show that the
method outperforms all indices on datasets.

For future research, we recommend that researchers
focus on adaptive window techniques. The paper used a
fixed-length window size, but adaptive window
techniques have the potential to enhance the results
more efficiently by incorporating sliding mechanisms
and aggregating functions. Furthermore, exploring
various sliding mechanisms and consensus functions
within this domain could further contribute to
advancements in the field.
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