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Abstract: 

 Software comprehension plays an important role during its improvement and maintenance process. 

Software modularization is a key activity for recovering the software architecture, which improves 

software understanding. Since the software modularization problem is NP-hard, meta-heuristics such 

as evolutionary algorithms (EAs) are usually used to solve it. EAs are problem-dependent, and they 

also require considerable space and time. Recently, the use of hyper-heuristic approaches growing to 

obtain more generality. This paper proposes an iterated local search (ILS) strengthened by a Q-

learning-based hyper-heuristic for software modularization that overcomes the limitations of EAs.  In 

the proposed algorithm, two main components of ILS, i.e., perturbation and local search components, 

are intelligently selected using a Q-learning-based hyper-heuristic in each iteration. The performance 

of the proposed algorithm is evaluated on eleven real-world software systems with small and medium 

sizes. The results of the experiments demonstrate that the proposed ILS produces modularizations 

that have higher or equal quality compared to the quality of the modularizations obtained by selected 

algorithms. 
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1. Introduction 

As software systems progress, their structure 

deviates from their original architecture, making 

software maintenance a significant challenge for 

developers. When the software designer is 

unavailable and there is insufficient documentation, 

this task becomes even more complex. Software 

modularization, an essential task in software 

maintenance, extracts well-structured components 

from source code. A well-structured software 

system is easier to maintain, improve, and 

understand.  

In software modularization, program artifacts are 

organized into modules based on their similarities. 

This means that the artifacts within a module are 

typically more alike to each other than they are to 

artifacts in other modules [1]. Graphs are a usual 

tool used to represent software systems and help to 

reduce their complexity [2]. One well-established 

type of graph used for this purpose is the artifact 

dependency graph (ADG) [1], [3], which provides 

an abstract view of the software architecture. ADG 

is frequently used as an input for modularization 

algorithms. Let ADG = (V, E) represent an artifact 

dependency graph, where V= {v1, v2, …, vn} is the 

set of n artifacts, and E ⊆V×V={(vi, vj)|vi, vjV and 

i≠j} is the set of links between artifacts, such as call 

dependencies, inheritance relationships, or semantic 

similarities. In software modularization, all source 

code artifacts must be divided into k non-

overlapping modules, denoted as M1, M2, …, Mk. 

This means that M1∪M2∪ … ∪Mk =V, where Mi ≠ ∅, 

Mi∩Mj = ∅, i, j = 1, 2, …, k, and i ≠ j. 

The literature contains numerous algorithms for 

software modularization. Due to the complexity of 

the software modularization problem (SMP), 

researchers tend to favor search-based techniques, 

such as local search methods and evolutionary 

algorithms (EAs), for solving this problem. 

Several studies, such as [4]–[10], have utilized 

EAs to address the SMP. EAs achieve near-optimal 

solutions but have some limitations that prevent 

their efficiency. The performance of EAs is 

significantly impacted by various parameters, and 

determining the optimal values for these parameters 

can be a time-intensive process. Furthermore, due to 

time and space constraints, EAs are not particularly 

effective for large-scale software systems [11]. 

Additionally, EAs are problem-specific techniques, 

which can be a limitation in certain contexts. 

Certain studies, such as [9], [12], have employed 

heuristic techniques like local search methods to 

obtain good-quality modularization results in a 

reasonable timeframe. However, such methods are 

prone to becoming trapped in local optima, resulting 

in solutions of lower quality when compared to 

those provided by EAs. To circumvent this issue, 

meta-heuristic (MH) techniques have been 

developed, which integrate diversification 

approaches with heuristics like local search methods 

to break free from local optima [13]. This 

integration results in achieving high modularization 

quality in a more reasonable time than EAs. 

 This paper utilizes iterated local search (ILS) 

[14], a meta-heuristic that combines a perturbation 

technique with the local search method, for software 

modularization. When introducing the ILS 

approach, we must address the following issues that 

need to be resolved: 

 Defining the perturbation component is one of 

the most critical challenges [14]. The design of 

this component is crucial, as it directly impacts 

the effectiveness of the ILS approach. The 

perturbation component must be potent enough 

to break free from the local optima yet not so 

potent that it reduces ILS to a simple random 

restart algorithm [14]. To overcome this 

limitation, we will employ multiple perturbation 

techniques from various perspectives instead of 

relying on a single perturbation method. 

 Given the numerous local search and 

perturbation methods available for SMP, ILS 

can potentially select from various pairwise 

combinations of these methods. In manually 

designing an ILS approach, selecting an 

appropriate combination of these two 

components from all possible combinations is a 

significant challenge. Trial and error is a 

straightforward approach, but it is time-

consuming. Moreover, the optimal configuration 

of these two components may change during the 

modularization process. To address this 
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limitation, we will leverage a reinforcement 

learning (RL) technique as an intelligent means 

of selecting the optimal combination. 

Certain studies, such as [8], [15]–[23], have used 

machine learning (ML) techniques to improve 

search performance. ML techniques are used to 

extract useful knowledge from the data generated 

during the search process, which can aid MHs in 

making better decisions [13]. MHs leverage this 

knowledge to conduct intelligent searches and 

enhance their performance. RL [13] is a type of ML 

technique in which a learner progressively learns 

from interactions with the environment to select 

optimal actions that either maximize rewards or 

minimize risks. In this paper, we utilize an RL 

algorithm to address the limitations of RL 

techniques employed in certain studies, as outlined 

below: 

 The RL technique possesses two crucial 

attributes: trial and error and delayed reward 

[21]. Despite featuring a reward/penalty scheme, 

some RL-based algorithms, such as [16], [17], 

[20], do not adhere to these characteristics. To 

address this limitation, we will utilize an RL 

technique that takes both features into account. 

 In some existing RL-based algorithms, such as 

[16], [17], the set of states defined does not 

encompass all potential states that may arise 

during the search process. Additionally, the 

defined states possess varying parameters, and 

setting these parameters correctly can be a time-

intensive task. To address this limitation, we 

will define a set of states that includes all 

possible conditions and is also problem-

independent. 

Hyper-heuristic (HH) [8], [21] approaches have 

recently garnered attention for their effectiveness in 

solving optimization problems such as SMP [8]. 

HHs function at a higher level of abstraction than 

MHs, operating on the space of low-level heuristics 

(LLHs) rather than the solution space. A HH 

automatically selects (selection HH) or generates 

(generation HH) a set of LLHs for solving 

optimization problems. A selection HH is defined as 

“heuristics to select heuristics”. It comprises two 

levels: the low level consists of a problem 

representation, evaluation function(s), and a set of 

problem-specific LLHs, while the high level 

contains an LLH selection method and a move 

acceptance method. An LLH selection method 

chooses an LLH to produce a new solution. 

Selection HHs can leverage RL for the automatic 

selection of LLHs. RL-based HHs can be integrated 

with modular MHs, such as ILS, to intelligently 

select their components. 

The motivation behind this research is to present 

an ILS algorithm that not only addresses the time 

and space constraints of EAs and the issue of 

becoming trapped in local optima associated with 

local search methods but also enhances the quality 

of modularization solutions by conducting an 

intelligent search of the search space with the aid of 

an RL-based HH.  

This paper introduces an ILS algorithm 

strengthened by a Q-learning-based HH for software 

modularization. The key feature of the proposed 

algorithm is its utilization of a Q-learning-based HH 

to intelligently select ILS components, including 

perturbation and local search components. 

Additionally, we present an informative perturbation 

method for SMP. 

The experimental results conducted on eleven 

small and medium-scale software systems 

demonstrate that the proposed algorithm generates 

modularizations of superior or equivalent quality to 

the compared algorithms while requiring less 

execution time. 

The primary objective of this paper is to improve 

both modularization quality (MQ) and running time. 

The key contributions of this paper are outlined 

below: 

 Introducing a general ILS approach strengthened 

by a Q-learning-based HH that can also be 

employed for other combinatorial optimization 

problems in addition to SMP; 

 Presenting a fast modularization algorithm that 

concurrently improves MQ; 

 Using a Q-learning-based HH to intelligently 

choose the perturbation and local search 

components of ILS; 

 Introducing an informative perturbation method 

for SMP. 

The remainder of this paper is structured as 

follows. Section 2 provides an overview of related 

modularization algorithms. Q-learning is examined 

in section 3. The proposed algorithm is outlined in 



 

  

section 4. Section 5 presents the performance 

evaluation. Section 6 concludes the paper and 

highlights future research directions. 

2. Related works 

Within the realm of literature, various algorithms 

exist for solving SMP. Typically, these algorithms 

can be grouped into two distinct categories: 

hierarchical and non-hierarchical. In the following, 

we will address a few of these methodologies. 

2.1. Hierarchical methods 

This subsection presents several popular 

agglomerative hierarchical modularization methods. 

In agglomerative hierarchical algorithms [2], [24], 

each artifact is initially placed in a separate module. 

Then, at each stage, two artifacts with a higher 

degree of similarity are merged, and this process is 

repeated until all artifacts are contained within a 

single module. The similarity between two artifacts 

in these algorithms is evaluated using similarity 

measures [1]. Although hierarchical algorithms 

achieve solutions in a reasonable amount of time, 

their modularization quality is often suboptimal due 

to the use of local similarity measures [1]. In the 

following section, we will discuss some of the 

existing hierarchical modularization methods. Table 

(1) summarizes these methods, along with their 

features, including the similarity metric used and its 

type. 

There are several classic hierarchical methods, 

including Single linkage (SL) [2], complete linkage 

(CL) [2], average linkage (AL) [2], and weighted 

average linkage (WAL) [2]. 

Maqbool and Babri proposed two software 

modularization algorithms, the Combined 

Algorithm (CA) [25] and Weighted Combined 

Algorithm (WCA) [26]. WCA is a well-known 

hierarchical modularization algorithm that has two 

variations, WCA-UE and WCA-UENM, which 

employ Unbiased Ellenberg (UE) and Unbiased 

Ellenberg-NM (UENM), respectively. 

Andritsos and Tzerpos [27] introduced another 

popular hierarchical modularization algorithm called 

scaLable InforMation BOttleneck (LIMBO). 

LIMBO utilizes information theory and entropy 

principles to achieve software modularization. 

Naseem et al. [28] proposed the cooperative 

clustering technique (CCT) for software 

modularization. CCT employs multiple similarity 

measures that collaborate throughout the 

hierarchical modularization procedure. 

 

 

 

 

Table (1): Some hierarchical algorithms   

 
 

Method 

 
 

Similarity metric 

 
Type of 
metric 

 

SL Jaccard Local 

CL Jaccard Local 

AL Jaccard Local 

WAL Jaccard Local 

CA  Jaccard Local 

WCA  Ellenberg Local 

CCT Jaccard-NM and Unbiased Ellenberg-NM  Local 

LIMBO Entropy Local 

2.2. Non-hierarchical methods 

As SMP is an NP-hard problem, search-based 

algorithms are commonly employed to solve it. In 

search-based modularization algorithms, SMP is 

treated as a search problem [11]. An objective 

function guides the modularization process in these 

algorithms. TurboMQ and BasicMQ [1], [2], [5], 

[6], [8], [10], [11], [15], [29], [30] are two well-

known metrics utilized to assess modularization 

quality. Despite achieving near-optimal 

modularization, search-based algorithms have 

limitations in terms of running time and search 

space when applied to large-scale software systems. 

In the following, we will introduce various existing 

search-based modularization algorithms, which 

possess distinct features, such as global search (GS), 

local search (LS), single-objective (SO), multi-

objective (MO), structured-based (S) methods, and 

non-structured-based (Non-S) methods. Table (2) 

summarizes these methods and their features. 

Mitchell [9] introduced a single-objective 

algorithm called Bunch for software modularization 

that employs a genetic algorithm, Next Ascent Hill 

Climbing (NAHC) algorithm, and Steepest Ascent 

Hill Climbing (SAHC) algorithm. Bunch utilizes 

real-valued encoding. However, the efficiency of 

this algorithm diminishes in large-scale software 

systems due to the vast search space and significant 

presence of duplicate solutions. 



 

  

Parsa et al. [4] proposed a single-objective 

genetic algorithm called DAGC for software 

modularization, which significantly reduces the 

search space compared to Bunch. DAGC utilizes 

permutation-based encoding. 

Praditwong et al. [6] introduced two multi-

objective genetic algorithms, ECA and MCA. Both 

algorithms have five objectives that are similar to 

each other except for one case. 

Huang et al. [7] proposed an objective function 

called MS for software modularization that takes 

into account global modules and edge directions 

between two modules. They also utilized three 

algorithms, namely the hill-climbing algorithm (HC-

SMCP), genetic algorithm (GA-SMCP), and multi-

agent evolutionary algorithm (MAEA), to optimize 

the proposed objective function.  

Jalali et al. [10] introduced an objective function 

that considers structural and non-structural 

properties for software modularization. They also 

proposed three algorithms, namely the genetic 

algorithm, hill-climbing algorithm, and estimation 

of distribution algorithm, to optimize their objective 

function. 

Kargar et al. [12] presented SHC, a hill-climbing 

algorithm that employs a semantic dependency 

graph  to achieve software architecture in a 

programming language-independent manner. The 

search process in SHC is guided by the TurboMQ 

quality function. 

Prajapati et al. [31] introduced a multi-

dimensional information-driven many-objective 

search-based algorithm for solving SMP. Their 

algorithm optimizes various versions of coupling 

and cohesion metrics, including structural-based, 

lexical-based, and changed-history-based, 

simultaneously using a tailored many-objective 

artificial bee colony (MaABC) to produce a 

modularization. 

Arasteh et al. [32] proposed SCSO, a discretized 

sand cat swarm optimization method, for solving 

SMP. The modified SCSO aims to identify high-

quality regions in the search space by learning the 

correlations between decision factors. At each 

iteration of the algorithm, the search space is 

sampled based on a probability distribution. 

Kumari and Srinivas [8] introduced MHypEA, a 

Multi-objective Hyper-heuristic Evolutionary 

Algorithm, for addressing SMP. This genetic 

algorithm utilizes a hyper-heuristic approach to 

select genetic operators, such as selection, 

crossover, and mutation, based on reinforcement 

learning coupled with roulette-wheel selection. 

In addition to search-based algorithms, there are 

other non-hierarchical algorithms for software 

modularization. In the following, we introduce some 

of these methods. 

Pourasghar et al. [1] introduced a modularization 

algorithm called GMA that utilizes the depth of 

relationships to compute the similarity between 

artifacts. They also introduced seven new metrics to 

assess the quality of modularization. 

Teymourian et al. [11] proposed a fast clustering 

algorithm called FCA for software modularization. 

FCA performs some operations on the dependency 

matrix and extracts other matrices based on a set of 

features. These matrices are used during the 

software modularization process. 

Tzerpos and Holt [33] introduced a pattern-based 

algorithm called ACDC for software 

modularization, which utilizes multiple patterns to 

modularize program artifacts. Previous research has 

demonstrated that ACDC consistently outperforms 

other algorithms. 

3. Q-learning technique 

Q-learning [15], [21]–[23] is a commonly used 

reinforcement learning algorithm that requires a set 

of actions and states to be defined. A Q-value, 

which represents the total cumulative reward, is 

assigned to each state-action pair and is calculated 

using Equation (1) (Q-function). Suppose S= [s1, s2, 

s3, …, sn] and A= [a1, a2, a3, …, am] denote the set of 

possible states and selectable actions, respectively. 

The Q-value at time t, Q(st, at), is calculated by 

Equation (1), where rt+1 is the immediate 

reinforcement signal, and α∈ [0,1] and  γ∈ [0,1] are 

the learning rate and discount factor, respectively. 

The Q-values are stored in a Q-table. 

  (1) 
 

t 1
(st,at)=  (st,at) α[rt 1 γ 

 ma a  (st 1, a)– (st, at)] 

4. The proposed algorithm 



 

  

This section presents the proposed algorithm for 

software modularization. The algorithm implements 

an ILS procedure that utilizes a Q-learning-based 

hyper-heuristic to select perturbation and local 

search components at each iteration. Algorithm 1 

provides a high-level pseudo-code of the proposed 

algorithm. As shown in Algorithm 1, the proposed 

approach differs from formal ILS procedures in that 

the          

 

Table (2): Some search-based methods   

 
Method 

 
Type 

SO / 
MO 

LS / 
GS 

S / non-
S 

features 

Encoding 
type 

Learning-
based 

Main 
disadvantage 

Bunch GA SO GS S real-valued No Time and space 
limitations 

NAHC  HC SO LS S real-valued No Trapping in  

local optima 

SAHC  HC SO LS S real-valued No Trapping in 
 local optima 

DAGC  GA SO GS S permutation-
based 

No Time and space 
limitations 

ECA  Two archive GA MO GS S real-valued No Time and space 

limitations 

GA-SMCP  GA SO GS S real-valued No Time and space 
limitations 

EoD  EDA MO GS S, non-S real-valued Yes Time and space 
limitations 

SHC  HC SO LS non-S real-valued No Trapping in  

local optima 

Many-objective 
approach  

Artificial  Bee  Colony MO LS S, non-S real-valued No Trapping in 
local optima 

Modified SCSO  Sand Cat Swarm Optimization 
Algorithm  

 
SO 

 
GS 

 
S 

floating-point 
value 

 
No 

Time and space 
limitations 

MHypEA  Hyper-heuristic-based GA MO GS S real-valued Yes Time and space 
limitations 

Algorithm 1. The high-level pseudo-code of the  

proposed algorithm 

Ensure: Improved solution GlobalBest 

1: Q-table = Initialize_Q-table( ) 

2: Solinitial = Generate_initial_solution( ) 
3: Solcurrent = NAHC-local_search(Solinitial) 

4: GlobalBest = Solcurrent 

5: St = Specify_initial_state(fcurrent, avg(fcurrent)) 

6: while (the stopping condition is not reached) do 

7:   Selected_components = HH(Q-table, St) 

8:   Solp = Selected_ perturbation_method(Solcurrent) 

9:   Solnew = Selected_local_search_method(Solp) 
10: Update_O-table( ) 

11: Move_acceptance _ method(Solnew, Solcurrent ) 

12: St+1 = Specify_next_state(fcurrent, avg(fcurrent)) 
13: St = St+1 

14: Update_Global_best(Solnew, GlobalBest) 

15:end while 

 

perturbation and local search components are 

automatically selected using a hyper-heuristic. 

In Algorithm 1, the Q-learning-based hyper-

heuristic selects the best action, which comprises a 

perturbation method and a local search method with 

the highest Q-value, at each iteration. The selected 

methods are then implemented, starting from the last 

accepted local optimum solution. Following the 

execution, the Q-value for the action is updated 

based on its performance. A move acceptance 

method determines whether the new solution, i.e., 

the new local optimum, is accepted. The next state 

is determined based on the normalized fitness of the 

last accepted local optimum solution, and 

subsequently, the state and global best solution are 

updated. In the following, the details of the 

proposed algorithm are addressed. Then, the next 

iteration of ILS commences by selecting an 

appropriate action once again. This process of 

iteration and action selection continues until the 

stopping condition is satisfied. 

4.1. Encoding type 

Modularization solutions are represented using real-

valued encoding, proposed by [9]. In this encoding, 



 

  

the maximum number of modules is n, where n is 

the number of nodes. 

4.2. Objective function 

Cohesion [34] and coupling [34] are widely 

recognized metrics in software engineering that 

describe the relationships between artifacts within 

the same module and between artifacts across 

different modules, respectively [2]. A software 

system is well-designed if it has high cohesion and 

low coupling [2], [35]. This paper measures the 

modularization quality (MQ) during the search 

process using the TurboMQ metric [2], which aims 

to achieve low coupling and high cohesion. To 

compute MQ, the module factor (MF) is first 

calculated for all modules using Equation (2), where 

µi and εij represent the internal connections within 

module i and the external connections between 

modules i and j, respectively. Finally, MQ is 

computed using Equation (3), where k denotes the 

number of modules. 
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   ∑   

 

   

                                        ( ) 

4.3. Initial solution 

The initial solution is generated using a hierarchical 

method called single linkage [2]. 

4.4. Perturbation methods 

Three perturbation methods are employed to perturb 

the local optimum solutions. 

The first perturbation method involves randomly 

selecting a node from solution s and moving it into 

either a distinct module or an existing module. 

The second perturbation method involves 

performing multiple perturbation moves to 

transform a local optimum into a perturbed solution. 

Algorithm 2 provides the pseudo-code for this 

method. As demonstrated in the algorithm, an 

integer t is randomly generated between 1 and n/2, 

where n is the number of nodes, to represent the 

number of iterations. In each iteration, two nodes 

from different modules are randomly selected, and 

their module numbers are swapped. Each pair of 

nodes can only be selected for swapping once.  

The third perturbation method is informative and 

exploits information about nodes and their 

neighbors. Algorithm 3 outlines the pseudo-code for 

this method. It uses the notions of vertex cohesion 

and vertex coupling discussed in [36] to 

purposefully identify nodes whose module numbers 

should be modified. Assume that s is the current 

solution, k represents the number of modules in s, 

and TurboMQ is the fitness of s. This method first 

verifies the relation vertex cohesion-vertex 

coupling<TurboMQ/k for all nodes in s. 

Algorithm 2. The pseudo-code of the second  

perturbation method  

Ensure: Perturbated solution s′ 

1: s′ =  current_solution 

2: t = generate an integer number between 1 to   
          n/2 randomly (n: the number of nodes) 

3: i = 1 

4: while (i<=t) do 

5:   x = generate an integer between 1 to n  
6:   y = generate an integer between 1 to n 

7:   s′ = swap(s′ ( ), s′ (y)) 

8:   i = i+1 
9: end while 
If node i satisfies this relation, its module 

number is randomly changed to the module number 

of one of its neighbors in s. If node i and all of its 

neighbors have the same module number in s, the 

module number of node i is randomly changed to 

one of the module numbers in s. If none of the nodes 

meet this relation, a node is randomly chosen. 

Algorithm 3. The pseudo-code of the third  

perturbation method 

Ensure: Perturbated solution s′ 
1: s = current_solution 

2: s′ = s 

3: k = number of modules in s 

4: TurboMQ = fitness of s (fs) 
5: i = 1 

6: while (i<=n   n: the number of nodes) do 

7:   compute vertex cohesion for node i of the s 
8:   compute vertex coupling for node i of the s 

9:   if (vertexcohesion-vertexcoupling<TurboMQ/k) 

10:    s′(i) ← choose from the s, the module number   
         of one of  the dissimilar-module neighbors of  

         node i, randomly                                                 

11: end if 

12:    i = i+1 
13:end while 

4.5. Local search methods 



 

  

Two versions of the hill climbing algorithm, called 

NAHC [9] and SAHC [9], serve as the local search 

components. 

4.6. Q-learning-based hyper-heuristic  

The proposed ILS employs a hyper-heuristic to 

automatically select a pair containing a perturbation 

method and a local search method at each iteration. 

This hyper-heuristic utilizes Q-learning as the LLH 

selection method, thus requiring the definition of a 

set of actions and states.  

The proposed algorithm treats a pair having a 

perturbation method and a local search method as an 

action. With three perturbation methods and two 

local search methods provided in this paper, there 

are six possible actions to choose from. 

In Q-learning, the state represents the 

environmental condition for deciding an action. In 

the proposed algorithm, the state specifies the last 

accepted local optimum solution, i.e., the first 

solution of the next iteration. This paper categorizes 

the state space into three distinct categories based on 

fitness value. The fitness value is normalized using 

Equation (4), where Avg(flocal-optimum) represents the 

average fitness value of local optimum solutions 

from the first to the current iteration. The state space 

is partitioned into three aggregate states: normal(f)∈ 

[0,0.67), [0.67,1.33), and [1.33,∞). 

normal(f)=
f

  g(    a -       )
                                  (4) 

In this paper, the parameters of the Q-function 

(Equation (1)) are determined as follows: 

 The reinforcement signal, r, represents the 

reward or penalty and is specified by the user. 

The selected action, comprising a perturbation 

method and a local search method, is 

implemented. If the global best solution 

improves following the execution of the chosen 

action, the state-action pair is rewarded with 

r=1. Conversely, if the global best solution 

doesn't improve, the state-action pair is 

penalized with r=-1. 

 The discount factor, γ, determines the impact of 

future rewards and is recommended to be set at 

0.8 [21], [22]. 

 The learning rate, α, determines the ratio of 

accepting the newly learned information.  In this 

paper, α is dynamically adjusted using Equation 

(5) [21], where tcurrent denotes the current time of 

the algorithm and tmax represents the total 

execution time of the algorithm. 

α =1–(    
tcurrent

tma 
)                               (5) 

The Q-table is initialized with zero for all its 

elements. During each iteration, the action with the 

highest Q-value is chosen for implementation. 

The All Moves method is utilized as the move 

acceptance method [21]. This method always 

accepts the newly generated local optimum solution. 

4.7. The stopping condition 

The algorithm is designed to terminate after 50 

seconds of execution. However, if the global best 

solution fails to improve for 30 consecutive 

iterations, the algorithm terminates before reaching 

the maximum time limit. 

4.8. A numerical example  

We provide a numerical example for a better 

understanding of the proposed algorithm. Given 

three perturbation methods and two local search 

methods, there are six possible actions to choose 

from, as delineated in Table (3). 

Table (3): The selectable actions of the example 

A1 Perturbation method 1 + NAHC 

A2 Perturbation method 2 + NAHC 

A3 Perturbation method 3 + NAHC 

A4 Perturbation method 1 + SAHC 

A5 Perturbation method 2 + SAHC 

A6 Perturbation method 3 + SAHC 

 

The Q-table is initialized to zero, as 

demonstrated in Table (4). Assuming that the fitness 

value of the first local optimum solution, fcurrent, is 

0.5, norm(fcurrent) is 1, and the current state (st) is the 

norm(f)∈ [0.67,1.33). At this stage, the fitness value 

of the global best solution is also 0.5. 

Table (4): The initialization of the Q-table  

 A1 A2 A3 A4 A5 A6 

norm(f)∈ [0,0.67) 0 0 0 0 0 0 

norm(f)∈ [0.67,1.33) 0 0 0 0 0 0 

norm(f)∈ [1.33,∞) 0 0 0 0 0 0 

 



 

  

Initially, the RL-based HH approach selects an 

action with the highest Q-value to determine the 

components of ILS. Assume that A1, i.e., 

Perturbation method 1 + NAHC, is chosen for this 

iteration. The selected components are executed, 

resulting in the generation of a new local optimum 

solution (Solnew) with a fitness value of 1.5. 

Following this, the Q-table is updated. Assuming 

that α=0.9 (α is specified by Equation (5) in the real 

execution) and γ=0.8, the Q-value of (norm(f)∈ 

[0.67,1.33), A1) is computed using Equation (1), 

where rt+1=1 since the execution of A1 results in a 

solution with a better fitness value than the global 

best solution. Table (5) displays the updated Q-

table. 

Table (5): The Q-table after one iteration of ILS 

 A1 A2 A3 A4 A5 A6 

norm(f)∈ [0,0.67) 0 0 0 0 0 0 

norm(f)∈ [0.67,1.33) 0.9 0 0 0 0 0 

norm(f)∈ [1.33,∞) 0 0 0 0 0 0 

 

Subsequently, the newly generated solution 

(Solnew) is adopted as the current solution (Solcurrent), 

and the next state (st+1) is specified using the current 

solution's fitness value, fcurrent, and the average 

fitness values of local optimum solutions obtained 

from the initial iteration to the current one as 

indicated by Equation (4): Avg(fcurrent) = 

(0.5+2.5)/2=1.5, norm(f) = 2.5/1.5=1.667. 

Therefore, st+1 is the norm (f)∈[1.33,∞). 

Lastly, the next state, i.e., st+1, is considered as 

the current state, i.e., st (st = norm(f)∈[1.33,∞)). The 

fitness value of the global best solution is updated to 

2.5. Subsequently, the next iteration of ILS 

commences by selecting an appropriate action once 

again. This process of iteration and action selection 

continues until the stopping condition is satisfied. 

5. Performance evaluation 

This section assesses the performance of the 

proposed algorithm. Initially, the experimental setup 

is outlined, followed by a description of the 

experimental results.  

5.1. Experimental setup 

This subsection outlines the necessary setup for 

conducting the experiments. 

5.1.1. Software system 

Eleven small and medium-sized applications have 

been chosen for evaluation and comparison 

purposes. Table (6) illustrates the characteristics of 

these software systems. 

5.1.2. Expert’s decomposition 

A modularization algorithm is considered reliable 

when its outcomes closely align with expert 

modularization. To evaluate the modularization 

algorithms in this paper, the “mtunis” application, 

for which expert decomposition is available, is 

employed. 

Table (6): Description of selected software systems  

#Links #Files Applications 

57 20 mtunis 

32 13 compiler 

52 16 nos 

29 18 boxer 

33 21 spdb 

103 24 ispell 

64 26 ciald 

163 29 rcs 

89 36 star 

179 37 bison 

87 38 cia 

5.1.3. Assessment of results 

There exist several algorithms for software 

modularization. However, as there is no universally 

accepted definition of optimal modularization 

features, external and internal criteria are employed 

to evaluate modularization quality and compare the 

outcomes of different algorithms [2]. External 

criteria evaluate the proximity of the obtained 

modularization to expert decomposition, which is 

carried out by an individual who has decomposed 

the software system. A modularization algorithm is 

considered reliable when its outcomes are close to 

expert modularization [1]. Conversely, internal 

criteria assess the accuracy with which modules are 

separated based on various metrics. 

This study employs TurboMQ  [2] (Equation 

(3)), an internal criterion, to assess the performance 

of modularization methods. Additionally, the 

external criteria MoJo [2], Edge MoJo [2], and Fm 

[2] are used to measure the proximity of the 

obtained modularization to the expert's 

decomposition. Lower values of MoJo and Edge 

MoJo are indicative of better performance, while 



 

  

higher values of Fm and TurboMQ suggest superior 

outcomes. 

5.1.4. Algorithmic parameters 

The parameter setting suggested in [11] is used for 

experiments. 

5.1.5. Research questions (RQs) 

We answer the following research questions to 

evaluate the proposed algorithm. 

1) Does the proposed algorithm achieve 

modularization close to the expert 

decomposition? 

2) Does the proposed algorithm produce 

modularizations with a higher MQ (TurboMQ) 

compared to hierarchical and non-hierarchical 

algorithms? 

3) Is the proposed algorithm stable? 

4) Does the proposed algorithm converge to the 

answer (solution)? 

5) Does the execution time of the proposed 

algorithm less than EAs such as Bunch and 

DAGC? 

6) Does the proposed informative perturbation 

method is beneficial and leads to improve search 

performance? 

7) Does the proposed ILS algorithm have better 

performance than classic (formal) ILS? 

5.2. Experimental results 

This section describes the experimental results. For 

comparison with the proposed algorithm, we 

selected several methods discussed in section 2, 

including Complete Linkage (CL) [2], Single 

Linkage (SL) [2], Average Linkage (AL) [2], WCA-

UE [2], fast clustering algorithm (FCA) [11], Bunch 

[9], DAGC [4], NAHC [9], and SAHC [9]. 

Additionally, the k-means algorithm [2] and ACDC 

are chosen for comparison. We address the research 

questions below. 

5.2.1. RQ 1 

To address RQ1, the MoJo, Edge MoJo, and Fm 

measures are calculated for the modularization 

outcomes produced by each algorithm. These 

external criteria are used to determine the proximity 

of the obtained modularization to the expert 

decomposition. Table (7) presents the values of 

these criteria for the compared search-based 

algorithms on the “mtunis” application. The most 

favorable outcomes in this table are highlighted in 

bold. Regarding MoJo, the proposed algorithm 

performs better than DAGC and is equivalent to 

other methods. In terms of Edge MoJo and Fm, it is 

equivalent to Bunch and superior to other methods. 

The proposed algorithm exhibits similar behavior to 

Bunch, which is a well-known method for software 

modularization. These findings confirm the 

reliability of the proposed algorithm. 

Table (7): The external criteria values 

Fm Edge MoJo MoJo Algorithms 

0.57 7.47 5 Bunch 

0.48 10.33 7 DAGC 

0.53 13.14 5 NAHC 

0.55 10.81 5 SAHC 

0.57 7.47 5 Proposed algorithm 

5.2.2. RQ 2 

To address RQ2, the TurboMQ (Equation (3)) value 

is calculated for the modularization outcomes 

produced by each algorithm on ten applications. 

Table (8) presents a comparison of the proposed 

algorithm with some hierarchical methods, FCA, 

ACDC, and k-means, while Table (9) demonstrates 

its comparison with some search-based algorithms. 

The most favorable outcomes in these tables are 

highlighted in bold. As shown in Table (8), the 

proposed algorithm outperforms all compared 

hierarchical and non-hierarchical methods. In Table 

(9), the proposed algorithm performs better than 

NAHC, SAHC, and DAGC in most cases and is 

superior to Bunch in half of the cases while being 

equivalent to Bunch in the remaining cases. 

Therefore, the proposed algorithm exhibits good 

performance in terms of TurboMQ. 

5.2.3. RQ 3 

To address RQ3, ten applications are selected, and 

the proposed algorithm is executed 30 times for 

each case. If the algorithm's results are close enough 

to each other, it is stable.  

To analyze the stability of the outcomes, the t-

test statistical technique is employed. For this, the 

obtained results are divided into two groups of equal 

size, named G1 and G2. Subsequently, descriptive 

and inferential statistics are derived from G1 and 

G2. Table (10) displays the outcomes, where the 



 

  

first three columns present descriptive statistics, and 

the last two columns depict the output of the 

inferential statistics. The descriptive statistics 

consist of the mean, standard deviation, and 

standard error between the mean of the two groups. 

 

Table (8): Comparison of the proposed algorithm with some hierarchical and non-hierarchical methods in terms of 
TurboMQ 

Proposed algorithm k-means ACDC FCA SL CL AL WCA-UE Applications 

1.506 0.850 1.000 1.220 0.933 0.527 0.527 0.836 Compiler 

3.101 0.790 2.820 3.020 0.964 0.983 0.964 1.343 Boxer 

2.190 1.200 1.750 1.970 0.995 1.639 1.739 1.489 Ispell 

2.684 1.000 1.000 2.250 0.994 0.994 0.994 0.994 Bison 

2.790 1.780 1.860 2.049 0.997 0.997 0.997 0.997 Cia 

2.851 0.780 1.700 1.720 0.984 1.093 0.487 0.984 Ciald 

1.636 0.980 1.000 1.080 0.990 0.990 0.990 0.969 Nos 

2.201 1.260 1.000 1.810 1.018 1.018 0.990 0.977 Rcs 

5.741 1.150 5.000 5.000 0.933 0.933 0.933 0.933 Spdb 

3.832 0.810 2.090 3.048 0.989 0.805 0.989 1.388 Star 

 

Table (9): Comparison of the proposed algorithm with some search-based methods in terms of TurboMQ 

Proposed 
algorithm 

DAGC Bunch SAHC NAHC Applications 

1.506 1.506 1.506 1.465 1.442 Compiler 

3.101 3.101 3.101 3.101 2.931 Boxer 

2.190 1.997 2.177 2.043 2.013 Ispell 

2.684 1.763 2.606 2.632 2.565 Bison 

2.790 1.833 2.706 2.670 2.729 Cia 

2.851 2.463 2.851 2.838 2.721 Ciald 

1.636 1.606 1.636 1.550 1.547 Nos 

2.201 1.894 2.175 2.103 2.066 Rcs 

5.741 5.314 5.741 5.741 5.741 Spdb 

3.832 2.831 3.809 3.798 3.536 Star 

Table (10): t-test for analyzing the stability of the proposed algorithm  

 Descriptive Statistics Inferential Statistics 

Case Study Mean Standard 
Deviation 

Standard Error 
between Mean 

le ene’s test t-test 

G1 G2 G1 G2 G1 G2 F Sig. T Sig. 

Compiler 1.480 1.493 0.035 0.029 0.016 0.013 1.524 0.252 -0.632 0.545 
Boxer 3.067 3.033 0.076 0.093 0.034 0.042 1.524 0.252 0.632 0.545 
Ispell 2.155 2.161 0.079 0.066 0.035 0.029 0.121 0.737 -0.130 0.899 
Bison 2.660 2.674 0.053 0.023 0.024 0.010 1.893 0.206 -0.516 0.620 
Cia 2.778 2.766 0.027 0.054 0.012 0.024 1.366 0.276 0.438 0.673 

Ciald 2.848 2.846 0.006 0.007 0.003 0.003 1.524 0.252 0.632 0.545 
Nos 1.618 1.619 0.040 0.038 0.018 0.017 0.004 0.950 0.024 0.981 
Rcs 2.174 2.154 0.060 0.065 0.027 0.029 0.491 0.503 0.493 0.635 

Spdb 5.656 5.741 0.191 0.000 0.085 0.000 7.111 0.029 -1.000 0.347 
Star 3.825 3.766 0.015 0.129 0.007 0.058 5.263 0.051 1.016 0.339 

Levene's test is utilized as an inferential statistic to 

evaluate the equality of variances for a variable 

calculated for two groups. If the p-value (indicated 

in the “Sig.” column in the table) is greater than a 

certain significance level (0.05 in our experiments), 

the null hypothesis of equal variances cannot be 

rejected. The last columns of Table (10) refer to the 

outcomes of an independent two-sample t-test with 

equal sample sizes and equal variances (based on 

the results of Levene's test) on two randomly 

separated groups of proposed algorithm outcomes. 

All the p-values are greater than 0.05, indicating that 

the proposed algorithm exhibits stability.  

5.2.4. RQ 4 

To address RQ4, the convergence of the proposed 

algorithm is assessed. To accomplish this, three 

software systems are chosen as samples. Figures (1-

3) depict the convergence plots of our algorithm for 

the “Cia,” “Ispell,” and “Nos” applications, 

respectively. In these figures, the line denotes the 

best  



 

  

solution generated by the algorithm up to the current 

iteration. These figures substantiate that the 

proposed algorithm converges to the solution after 

several iterations. 

 

 

 

 

 

 

 

5.2.5. RQ 5 

To address RQ5, we compared the execution time of 

the proposed algorithm with Bunch and DAGC, two 

well-known representatives of evolutionary 

algorithms. Figures (4) and (5) display the results 

for selected applications. It is worth noting that the 

execution times of Bunch and DAGC have been 

obtained from [37]. These figures illustrate that the 

execution time of the proposed algorithm is 

significantly lower than that of Bunch and DAGC.    

5.2.6. RQ 6 

To address RQ6, we experimented to assess the 

effectiveness of the proposed perturbation method. 

For this, we compared the proposed algorithm and 

its variant with the proposed informative 

perturbation method disabled in terms of TurboMQ. 

Both algorithms were executed under the same 

conditions. The outcomes are presented in Table 

(11), where the bold values indicate the best 

outcomes. This table reveals that in most cases (70 

percent of cases), our algorithm, without the 

proposed informative perturbation method, failed to 

find the best solution. These findings demonstrate 

that the proposed informative perturbation method 

enhances the search performance of the proposed 

algorithm. 

 

 

 

Figure (5): Execution time of the algorithms on five other 
applications (second)  

Figure (4): Execution time of the algorithms on five 
applications (second)  

Figure (1): Convergence diagram of the proposed algorithm 

for the “Cia” application 

Figure (2): Convergence diagram of the proposed algorithm 

for the “Ispell” application 

Figure (3): Convergence diagram of the proposed algorithm 

for the “Nos” application 
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Table (11): Comparison of the proposed algorithm and its 

variant without the proposed informative perturbation 
method  

 
Proposed 
algorithm 

 
Proposed algorithm without 

informative perturbation 
method 

 
Applications 

1.506 1.506 Compiler 

3.101 2.931 Boxer 

2.190 2.190 Ispell 

2.684 2.627 Bison 

2.790 2.729 Cia 

2.851 2.539 Ciald 

1.636 1.628 Nos 

2.201 2.175 Rcs 

5.741 5.741 Spdb 

3.832 3.481 Star 

 

5.2.7. RQ 7 

To address RQ7, we experimented with comparing 

the performance of the proposed ILS algorithm with 

classic ILS in terms of TurboMQ. To accomplish 

this, we executed classic ILS by considering 

different combinations of the local search method 

and perturbation method. Since this paper presents 

three perturbation methods and two local search 

methods, there are a total of six selectable 

combinations. The outcomes are demonstrated in 

Table (12), where per1, per2, and per3 denote the 

first, second, and third perturbation methods defined 

in this paper, respectively. In this table, the bold 

values indicate the best outcomes. The results reveal 

that, unlike the proposed ILS, none of the 

implemented classic ILS algorithms achieve the best 

outcome in all cases. Therefore, the proposed ILS 

algorithm exhibits superior performance compared 

to classic ILS. 

6. Conclusion 

Modularization is a technique in reverse engineering 

that aids in understanding software during the 

software maintenance process. In this paper, we 

introduced a modified iterated local search (ILS) for 

software modularization. The proposed ILS employs 

a Q-learning-based hyper-heuristic to automatically 

select the perturbation method and local search 

method in each iteration. To apply Q-learning, we 

utilized a fitness-based state categorization that is 

independent of the problem. We also presented an 

informative perturbation method for the software 

modularization problem. The outcomes of 

experiments and comparisons with other methods on 

eleven small and medium-scale applications 

revealed that the proposed algorithm generates 

better modularizations in most cases. Furthermore, 

the proposed algorithm is general and can be easily 

adapted to other optimization problems. 

In the following, some improvements of this 

paper that can be performed in future research are 

listed. 

1. Testing the proposed algorithm on large-scale 

software systems such as Mozilla Firefox. 

2. Using other metrics to evaluate the 

modularization quality. 

3. Employing the proposed algorithm to other 

optimization problems. 

4. Employing reinforcement learning-based hyper-

heuristic in other modular meta-heuristic to 

automatically select their components. 

Table (12): Comparison of the proposed ILS algorithm with the classic ILS algorithm 

 
Proposed 

ILS 
algorithm 

 
ILS 

(per3+NAHC) 

 
ILS 

(per2+NAHC) 

 
ILS 

(per1+NAHC) 

 
ILS 

(per3+SAHC) 

 
ILS 

(per2+SAHC) 

 
ILS 

(per1+SAHC) 

 
Applications 

1.506 1.506 1.273 1.506 1.506 1.273 1.497 Compiler 

3.101 3.101 1.781 3.101 3.101 1.781 3.101 Boxer 

2.190 2.176 1.934 2.174 2.190 1.739 2.120 Ispell 

2.684 2.664 2.504 2.590 2.675 2.345 2.601 Bison 

2.790 2.787 2.634 2.779 2.768 2.586 2.636 Cia 

2.851 2.851 1.532 2.851 2.851 1.532 2.731 Ciald 

1.636 1.636 1.000 1.627 1.636 1.000 1.636 Nos 

2.201 2.136 1.953 2.157 2.166 1.953 2.166 Rcs 

5.741 5.741 3.000 5.741 5.741 2.000 5.741 Spdb 



 

  

3.832 3.803 1.690 3.038 3.832 1.690 3.832 Star 
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