

An Iterated Local Search Strengthened by a Q-learning-based

Hyper-heuristic for Software Modularization

Mahjoubeh Tajgardan
1
, Ph.D. Candidate, Habib Izadkhah

2*
, Associate Professor, Shahriar Lotfi

 3
, Associate

Professor

1,2,3
 Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran,

m.tajgardan@tabrizu.ac.ir, izadkhah@tabrizu.ac.ir, shahriar_lotfi@tabrizu.ac.ir

Abstract:

 Software comprehension plays an important role during its improvement and maintenance process.

Software modularization is a key activity for recovering the software architecture, which improves

software understanding. Since the software modularization problem is NP-hard, meta-heuristics such

as evolutionary algorithms (EAs) are usually used to solve it. EAs are problem-dependent, and they

also require considerable space and time. Recently, the use of hyper-heuristic approaches growing to

obtain more generality. This paper proposes an iterated local search (ILS) strengthened by a Q-

learning-based hyper-heuristic for software modularization that overcomes the limitations of EAs. In

the proposed algorithm, two main components of ILS, i.e., perturbation and local search components,

are intelligently selected using a Q-learning-based hyper-heuristic in each iteration. The performance

of the proposed algorithm is evaluated on eleven real-world software systems with small and medium

sizes. The results of the experiments demonstrate that the proposed ILS produces modularizations

that have higher or equal quality compared to the quality of the modularizations obtained by selected

algorithms.

Keywords:

Software modularization; Iterated local search; Hyper-heuristic; Q-learning; Evolutionary algorithms.

mailto:shahriar_lotfi@tabrizu.ac.ir

*
 Habib Izadkhah, izadkhah@tabrizu.ac.ir

1. Introduction

As software systems progress, their structure

deviates from their original architecture, making

software maintenance a significant challenge for

developers. When the software designer is

unavailable and there is insufficient documentation,

this task becomes even more complex. Software

modularization, an essential task in software

maintenance, extracts well-structured components

from source code. A well-structured software

system is easier to maintain, improve, and

understand.

In software modularization, program artifacts are

organized into modules based on their similarities.

This means that the artifacts within a module are

typically more alike to each other than they are to

artifacts in other modules [1]. Graphs are a usual

tool used to represent software systems and help to

reduce their complexity [2]. One well-established

type of graph used for this purpose is the artifact

dependency graph (ADG) [1], [3], which provides

an abstract view of the software architecture. ADG

is frequently used as an input for modularization

algorithms. Let ADG = (V, E) represent an artifact

dependency graph, where V= {v1, v2, …, vn} is the

set of n artifacts, and E ⊆V×V={(vi, vj)|vi, vjV and

i≠j} is the set of links between artifacts, such as call

dependencies, inheritance relationships, or semantic

similarities. In software modularization, all source

code artifacts must be divided into k non-

overlapping modules, denoted as M1, M2, …, Mk.

This means that M1∪M2∪ … ∪Mk =V, where Mi ≠ ∅,

Mi∩Mj = ∅, i, j = 1, 2, …, k, and i ≠ j.

The literature contains numerous algorithms for

software modularization. Due to the complexity of

the software modularization problem (SMP),

researchers tend to favor search-based techniques,

such as local search methods and evolutionary

algorithms (EAs), for solving this problem.

Several studies, such as [4]–[10], have utilized

EAs to address the SMP. EAs achieve near-optimal

solutions but have some limitations that prevent

their efficiency. The performance of EAs is

significantly impacted by various parameters, and

determining the optimal values for these parameters

can be a time-intensive process. Furthermore, due to

time and space constraints, EAs are not particularly

effective for large-scale software systems [11].

Additionally, EAs are problem-specific techniques,

which can be a limitation in certain contexts.

Certain studies, such as [9], [12], have employed

heuristic techniques like local search methods to

obtain good-quality modularization results in a

reasonable timeframe. However, such methods are

prone to becoming trapped in local optima, resulting

in solutions of lower quality when compared to

those provided by EAs. To circumvent this issue,

meta-heuristic (MH) techniques have been

developed, which integrate diversification

approaches with heuristics like local search methods

to break free from local optima [13]. This

integration results in achieving high modularization

quality in a more reasonable time than EAs.

 This paper utilizes iterated local search (ILS)

[14], a meta-heuristic that combines a perturbation

technique with the local search method, for software

modularization. When introducing the ILS

approach, we must address the following issues that

need to be resolved:

 Defining the perturbation component is one of

the most critical challenges [14]. The design of

this component is crucial, as it directly impacts

the effectiveness of the ILS approach. The

perturbation component must be potent enough

to break free from the local optima yet not so

potent that it reduces ILS to a simple random

restart algorithm [14]. To overcome this

limitation, we will employ multiple perturbation

techniques from various perspectives instead of

relying on a single perturbation method.

 Given the numerous local search and

perturbation methods available for SMP, ILS

can potentially select from various pairwise

combinations of these methods. In manually

designing an ILS approach, selecting an

appropriate combination of these two

components from all possible combinations is a

significant challenge. Trial and error is a

straightforward approach, but it is time-

consuming. Moreover, the optimal configuration

of these two components may change during the

modularization process. To address this

mailto:izadkhah@tabrizu.ac.ir

limitation, we will leverage a reinforcement

learning (RL) technique as an intelligent means

of selecting the optimal combination.

Certain studies, such as [8], [15]–[23], have used

machine learning (ML) techniques to improve

search performance. ML techniques are used to

extract useful knowledge from the data generated

during the search process, which can aid MHs in

making better decisions [13]. MHs leverage this

knowledge to conduct intelligent searches and

enhance their performance. RL [13] is a type of ML

technique in which a learner progressively learns

from interactions with the environment to select

optimal actions that either maximize rewards or

minimize risks. In this paper, we utilize an RL

algorithm to address the limitations of RL

techniques employed in certain studies, as outlined

below:

 The RL technique possesses two crucial

attributes: trial and error and delayed reward

[21]. Despite featuring a reward/penalty scheme,

some RL-based algorithms, such as [16], [17],

[20], do not adhere to these characteristics. To

address this limitation, we will utilize an RL

technique that takes both features into account.

 In some existing RL-based algorithms, such as

[16], [17], the set of states defined does not

encompass all potential states that may arise

during the search process. Additionally, the

defined states possess varying parameters, and

setting these parameters correctly can be a time-

intensive task. To address this limitation, we

will define a set of states that includes all

possible conditions and is also problem-

independent.

Hyper-heuristic (HH) [8], [21] approaches have

recently garnered attention for their effectiveness in

solving optimization problems such as SMP [8].

HHs function at a higher level of abstraction than

MHs, operating on the space of low-level heuristics

(LLHs) rather than the solution space. A HH

automatically selects (selection HH) or generates

(generation HH) a set of LLHs for solving

optimization problems. A selection HH is defined as

“heuristics to select heuristics”. It comprises two

levels: the low level consists of a problem

representation, evaluation function(s), and a set of

problem-specific LLHs, while the high level

contains an LLH selection method and a move

acceptance method. An LLH selection method

chooses an LLH to produce a new solution.

Selection HHs can leverage RL for the automatic

selection of LLHs. RL-based HHs can be integrated

with modular MHs, such as ILS, to intelligently

select their components.

The motivation behind this research is to present

an ILS algorithm that not only addresses the time

and space constraints of EAs and the issue of

becoming trapped in local optima associated with

local search methods but also enhances the quality

of modularization solutions by conducting an

intelligent search of the search space with the aid of

an RL-based HH.

This paper introduces an ILS algorithm

strengthened by a Q-learning-based HH for software

modularization. The key feature of the proposed

algorithm is its utilization of a Q-learning-based HH

to intelligently select ILS components, including

perturbation and local search components.

Additionally, we present an informative perturbation

method for SMP.

The experimental results conducted on eleven

small and medium-scale software systems

demonstrate that the proposed algorithm generates

modularizations of superior or equivalent quality to

the compared algorithms while requiring less

execution time.

The primary objective of this paper is to improve

both modularization quality (MQ) and running time.

The key contributions of this paper are outlined

below:

 Introducing a general ILS approach strengthened

by a Q-learning-based HH that can also be

employed for other combinatorial optimization

problems in addition to SMP;

 Presenting a fast modularization algorithm that

concurrently improves MQ;

 Using a Q-learning-based HH to intelligently

choose the perturbation and local search

components of ILS;

 Introducing an informative perturbation method

for SMP.

The remainder of this paper is structured as

follows. Section 2 provides an overview of related

modularization algorithms. Q-learning is examined

in section 3. The proposed algorithm is outlined in

section 4. Section 5 presents the performance

evaluation. Section 6 concludes the paper and

highlights future research directions.

2. Related works

Within the realm of literature, various algorithms

exist for solving SMP. Typically, these algorithms

can be grouped into two distinct categories:

hierarchical and non-hierarchical. In the following,

we will address a few of these methodologies.

2.1. Hierarchical methods

This subsection presents several popular

agglomerative hierarchical modularization methods.

In agglomerative hierarchical algorithms [2], [24],

each artifact is initially placed in a separate module.

Then, at each stage, two artifacts with a higher

degree of similarity are merged, and this process is

repeated until all artifacts are contained within a

single module. The similarity between two artifacts

in these algorithms is evaluated using similarity

measures [1]. Although hierarchical algorithms

achieve solutions in a reasonable amount of time,

their modularization quality is often suboptimal due

to the use of local similarity measures [1]. In the

following section, we will discuss some of the

existing hierarchical modularization methods. Table

(1) summarizes these methods, along with their

features, including the similarity metric used and its

type.

There are several classic hierarchical methods,

including Single linkage (SL) [2], complete linkage

(CL) [2], average linkage (AL) [2], and weighted

average linkage (WAL) [2].

Maqbool and Babri proposed two software

modularization algorithms, the Combined

Algorithm (CA) [25] and Weighted Combined

Algorithm (WCA) [26]. WCA is a well-known

hierarchical modularization algorithm that has two

variations, WCA-UE and WCA-UENM, which

employ Unbiased Ellenberg (UE) and Unbiased

Ellenberg-NM (UENM), respectively.

Andritsos and Tzerpos [27] introduced another

popular hierarchical modularization algorithm called

scaLable InforMation BOttleneck (LIMBO).

LIMBO utilizes information theory and entropy

principles to achieve software modularization.

Naseem et al. [28] proposed the cooperative

clustering technique (CCT) for software

modularization. CCT employs multiple similarity

measures that collaborate throughout the

hierarchical modularization procedure.

Table (1): Some hierarchical algorithms

Method

Similarity metric

Type of
metric

SL Jaccard Local

CL Jaccard Local

AL Jaccard Local

WAL Jaccard Local

CA Jaccard Local

WCA Ellenberg Local

CCT Jaccard-NM and Unbiased Ellenberg-NM Local

LIMBO Entropy Local

2.2. Non-hierarchical methods

As SMP is an NP-hard problem, search-based

algorithms are commonly employed to solve it. In

search-based modularization algorithms, SMP is

treated as a search problem [11]. An objective

function guides the modularization process in these

algorithms. TurboMQ and BasicMQ [1], [2], [5],

[6], [8], [10], [11], [15], [29], [30] are two well-

known metrics utilized to assess modularization

quality. Despite achieving near-optimal

modularization, search-based algorithms have

limitations in terms of running time and search

space when applied to large-scale software systems.

In the following, we will introduce various existing

search-based modularization algorithms, which

possess distinct features, such as global search (GS),

local search (LS), single-objective (SO), multi-

objective (MO), structured-based (S) methods, and

non-structured-based (Non-S) methods. Table (2)

summarizes these methods and their features.

Mitchell [9] introduced a single-objective

algorithm called Bunch for software modularization

that employs a genetic algorithm, Next Ascent Hill

Climbing (NAHC) algorithm, and Steepest Ascent

Hill Climbing (SAHC) algorithm. Bunch utilizes

real-valued encoding. However, the efficiency of

this algorithm diminishes in large-scale software

systems due to the vast search space and significant

presence of duplicate solutions.

Parsa et al. [4] proposed a single-objective

genetic algorithm called DAGC for software

modularization, which significantly reduces the

search space compared to Bunch. DAGC utilizes

permutation-based encoding.

Praditwong et al. [6] introduced two multi-

objective genetic algorithms, ECA and MCA. Both

algorithms have five objectives that are similar to

each other except for one case.

Huang et al. [7] proposed an objective function

called MS for software modularization that takes

into account global modules and edge directions

between two modules. They also utilized three

algorithms, namely the hill-climbing algorithm (HC-

SMCP), genetic algorithm (GA-SMCP), and multi-

agent evolutionary algorithm (MAEA), to optimize

the proposed objective function.

Jalali et al. [10] introduced an objective function

that considers structural and non-structural

properties for software modularization. They also

proposed three algorithms, namely the genetic

algorithm, hill-climbing algorithm, and estimation

of distribution algorithm, to optimize their objective

function.

Kargar et al. [12] presented SHC, a hill-climbing

algorithm that employs a semantic dependency

graph to achieve software architecture in a

programming language-independent manner. The

search process in SHC is guided by the TurboMQ

quality function.

Prajapati et al. [31] introduced a multi-

dimensional information-driven many-objective

search-based algorithm for solving SMP. Their

algorithm optimizes various versions of coupling

and cohesion metrics, including structural-based,

lexical-based, and changed-history-based,

simultaneously using a tailored many-objective

artificial bee colony (MaABC) to produce a

modularization.

Arasteh et al. [32] proposed SCSO, a discretized

sand cat swarm optimization method, for solving

SMP. The modified SCSO aims to identify high-

quality regions in the search space by learning the

correlations between decision factors. At each

iteration of the algorithm, the search space is

sampled based on a probability distribution.

Kumari and Srinivas [8] introduced MHypEA, a

Multi-objective Hyper-heuristic Evolutionary

Algorithm, for addressing SMP. This genetic

algorithm utilizes a hyper-heuristic approach to

select genetic operators, such as selection,

crossover, and mutation, based on reinforcement

learning coupled with roulette-wheel selection.

In addition to search-based algorithms, there are

other non-hierarchical algorithms for software

modularization. In the following, we introduce some

of these methods.

Pourasghar et al. [1] introduced a modularization

algorithm called GMA that utilizes the depth of

relationships to compute the similarity between

artifacts. They also introduced seven new metrics to

assess the quality of modularization.

Teymourian et al. [11] proposed a fast clustering

algorithm called FCA for software modularization.

FCA performs some operations on the dependency

matrix and extracts other matrices based on a set of

features. These matrices are used during the

software modularization process.

Tzerpos and Holt [33] introduced a pattern-based

algorithm called ACDC for software

modularization, which utilizes multiple patterns to

modularize program artifacts. Previous research has

demonstrated that ACDC consistently outperforms

other algorithms.

3. Q-learning technique

Q-learning [15], [21]–[23] is a commonly used

reinforcement learning algorithm that requires a set

of actions and states to be defined. A Q-value,

which represents the total cumulative reward, is

assigned to each state-action pair and is calculated

using Equation (1) (Q-function). Suppose S= [s1, s2,

s3, …, sn] and A= [a1, a2, a3, …, am] denote the set of

possible states and selectable actions, respectively.

The Q-value at time t, Q(st, at), is calculated by

Equation (1), where rt+1 is the immediate

reinforcement signal, and α∈ [0,1] and γ∈ [0,1] are

the learning rate and discount factor, respectively.

The Q-values are stored in a Q-table.

 (1)

t 1
(st,at)= (st,at) α[rt 1 γ

 ma a (st 1, a)– (st, at)]

4. The proposed algorithm

This section presents the proposed algorithm for

software modularization. The algorithm implements

an ILS procedure that utilizes a Q-learning-based

hyper-heuristic to select perturbation and local

search components at each iteration. Algorithm 1

provides a high-level pseudo-code of the proposed

algorithm. As shown in Algorithm 1, the proposed

approach differs from formal ILS procedures in that

the

Table (2): Some search-based methods

Method

Type

SO /
MO

LS /
GS

S / non-
S

features

Encoding
type

Learning-
based

Main
disadvantage

Bunch GA SO GS S real-valued No Time and space
limitations

NAHC HC SO LS S real-valued No Trapping in

local optima

SAHC HC SO LS S real-valued No Trapping in
 local optima

DAGC GA SO GS S permutation-
based

No Time and space
limitations

ECA Two archive GA MO GS S real-valued No Time and space

limitations

GA-SMCP GA SO GS S real-valued No Time and space
limitations

EoD EDA MO GS S, non-S real-valued Yes Time and space
limitations

SHC HC SO LS non-S real-valued No Trapping in

local optima

Many-objective
approach

Artificial Bee Colony MO LS S, non-S real-valued No Trapping in
local optima

Modified SCSO Sand Cat Swarm Optimization
Algorithm

SO

GS

S

floating-point
value

No

Time and space
limitations

MHypEA Hyper-heuristic-based GA MO GS S real-valued Yes Time and space
limitations

Algorithm 1. The high-level pseudo-code of the

proposed algorithm

Ensure: Improved solution GlobalBest

1: Q-table = Initialize_Q-table()

2: Solinitial = Generate_initial_solution()
3: Solcurrent = NAHC-local_search(Solinitial)

4: GlobalBest = Solcurrent

5: St = Specify_initial_state(fcurrent, avg(fcurrent))

6: while (the stopping condition is not reached) do

7: Selected_components = HH(Q-table, St)

8: Solp = Selected_ perturbation_method(Solcurrent)

9: Solnew = Selected_local_search_method(Solp)
10: Update_O-table()

11: Move_acceptance _ method(Solnew, Solcurrent)

12: St+1 = Specify_next_state(fcurrent, avg(fcurrent))
13: St = St+1

14: Update_Global_best(Solnew, GlobalBest)

15:end while

perturbation and local search components are

automatically selected using a hyper-heuristic.

In Algorithm 1, the Q-learning-based hyper-

heuristic selects the best action, which comprises a

perturbation method and a local search method with

the highest Q-value, at each iteration. The selected

methods are then implemented, starting from the last

accepted local optimum solution. Following the

execution, the Q-value for the action is updated

based on its performance. A move acceptance

method determines whether the new solution, i.e.,

the new local optimum, is accepted. The next state

is determined based on the normalized fitness of the

last accepted local optimum solution, and

subsequently, the state and global best solution are

updated. In the following, the details of the

proposed algorithm are addressed. Then, the next

iteration of ILS commences by selecting an

appropriate action once again. This process of

iteration and action selection continues until the

stopping condition is satisfied.

4.1. Encoding type

Modularization solutions are represented using real-

valued encoding, proposed by [9]. In this encoding,

the maximum number of modules is n, where n is

the number of nodes.

4.2. Objective function

Cohesion [34] and coupling [34] are widely

recognized metrics in software engineering that

describe the relationships between artifacts within

the same module and between artifacts across

different modules, respectively [2]. A software

system is well-designed if it has high cohesion and

low coupling [2], [35]. This paper measures the

modularization quality (MQ) during the search

process using the TurboMQ metric [2], which aims

to achieve low coupling and high cohesion. To

compute MQ, the module factor (MF) is first

calculated for all modules using Equation (2), where

µi and εij represent the internal connections within

module i and the external connections between

modules i and j, respectively. Finally, MQ is

computed using Equation (3), where k denotes the

number of modules.

 ()

 ∑

 ()

4.3. Initial solution

The initial solution is generated using a hierarchical

method called single linkage [2].

4.4. Perturbation methods

Three perturbation methods are employed to perturb

the local optimum solutions.

The first perturbation method involves randomly

selecting a node from solution s and moving it into

either a distinct module or an existing module.

The second perturbation method involves

performing multiple perturbation moves to

transform a local optimum into a perturbed solution.

Algorithm 2 provides the pseudo-code for this

method. As demonstrated in the algorithm, an

integer t is randomly generated between 1 and n/2,

where n is the number of nodes, to represent the

number of iterations. In each iteration, two nodes

from different modules are randomly selected, and

their module numbers are swapped. Each pair of

nodes can only be selected for swapping once.

The third perturbation method is informative and

exploits information about nodes and their

neighbors. Algorithm 3 outlines the pseudo-code for

this method. It uses the notions of vertex cohesion

and vertex coupling discussed in [36] to

purposefully identify nodes whose module numbers

should be modified. Assume that s is the current

solution, k represents the number of modules in s,

and TurboMQ is the fitness of s. This method first

verifies the relation vertex cohesion-vertex

coupling<TurboMQ/k for all nodes in s.

Algorithm 2. The pseudo-code of the second

perturbation method

Ensure: Perturbated solution s′

1: s′ = current_solution

2: t = generate an integer number between 1 to
 n/2 randomly (n: the number of nodes)

3: i = 1

4: while (i<=t) do

5: x = generate an integer between 1 to n
6: y = generate an integer between 1 to n

7: s′ = swap(s′ (), s′ (y))

8: i = i+1
9: end while
If node i satisfies this relation, its module

number is randomly changed to the module number

of one of its neighbors in s. If node i and all of its

neighbors have the same module number in s, the

module number of node i is randomly changed to

one of the module numbers in s. If none of the nodes

meet this relation, a node is randomly chosen.

Algorithm 3. The pseudo-code of the third

perturbation method

Ensure: Perturbated solution s′
1: s = current_solution

2: s′ = s

3: k = number of modules in s

4: TurboMQ = fitness of s (fs)
5: i = 1

6: while (i<=n n: the number of nodes) do

7: compute vertex cohesion for node i of the s
8: compute vertex coupling for node i of the s

9: if (vertexcohesion-vertexcoupling<TurboMQ/k)

10: s′(i) ← choose from the s, the module number
 of one of the dissimilar-module neighbors of

 node i, randomly

11: end if

12: i = i+1
13:end while

4.5. Local search methods

Two versions of the hill climbing algorithm, called

NAHC [9] and SAHC [9], serve as the local search

components.

4.6. Q-learning-based hyper-heuristic

The proposed ILS employs a hyper-heuristic to

automatically select a pair containing a perturbation

method and a local search method at each iteration.

This hyper-heuristic utilizes Q-learning as the LLH

selection method, thus requiring the definition of a

set of actions and states.

The proposed algorithm treats a pair having a

perturbation method and a local search method as an

action. With three perturbation methods and two

local search methods provided in this paper, there

are six possible actions to choose from.

In Q-learning, the state represents the

environmental condition for deciding an action. In

the proposed algorithm, the state specifies the last

accepted local optimum solution, i.e., the first

solution of the next iteration. This paper categorizes

the state space into three distinct categories based on

fitness value. The fitness value is normalized using

Equation (4), where Avg(flocal-optimum) represents the

average fitness value of local optimum solutions

from the first to the current iteration. The state space

is partitioned into three aggregate states: normal(f)∈

[0,0.67), [0.67,1.33), and [1.33,∞).

normal(f)=
f

 g(a -)
 (4)

In this paper, the parameters of the Q-function

(Equation (1)) are determined as follows:

 The reinforcement signal, r, represents the

reward or penalty and is specified by the user.

The selected action, comprising a perturbation

method and a local search method, is

implemented. If the global best solution

improves following the execution of the chosen

action, the state-action pair is rewarded with

r=1. Conversely, if the global best solution

doesn't improve, the state-action pair is

penalized with r=-1.

 The discount factor, γ, determines the impact of

future rewards and is recommended to be set at

0.8 [21], [22].

 The learning rate, α, determines the ratio of

accepting the newly learned information. In this

paper, α is dynamically adjusted using Equation

(5) [21], where tcurrent denotes the current time of

the algorithm and tmax represents the total

execution time of the algorithm.

α =1–(
tcurrent

tma
) (5)

The Q-table is initialized with zero for all its

elements. During each iteration, the action with the

highest Q-value is chosen for implementation.

The All Moves method is utilized as the move

acceptance method [21]. This method always

accepts the newly generated local optimum solution.

4.7. The stopping condition

The algorithm is designed to terminate after 50

seconds of execution. However, if the global best

solution fails to improve for 30 consecutive

iterations, the algorithm terminates before reaching

the maximum time limit.

4.8. A numerical example

We provide a numerical example for a better

understanding of the proposed algorithm. Given

three perturbation methods and two local search

methods, there are six possible actions to choose

from, as delineated in Table (3).

Table (3): The selectable actions of the example

A1 Perturbation method 1 + NAHC

A2 Perturbation method 2 + NAHC

A3 Perturbation method 3 + NAHC

A4 Perturbation method 1 + SAHC

A5 Perturbation method 2 + SAHC

A6 Perturbation method 3 + SAHC

The Q-table is initialized to zero, as

demonstrated in Table (4). Assuming that the fitness

value of the first local optimum solution, fcurrent, is

0.5, norm(fcurrent) is 1, and the current state (st) is the

norm(f)∈ [0.67,1.33). At this stage, the fitness value

of the global best solution is also 0.5.

Table (4): The initialization of the Q-table

 A1 A2 A3 A4 A5 A6

norm(f)∈ [0,0.67) 0 0 0 0 0 0

norm(f)∈ [0.67,1.33) 0 0 0 0 0 0

norm(f)∈ [1.33,∞) 0 0 0 0 0 0

Initially, the RL-based HH approach selects an

action with the highest Q-value to determine the

components of ILS. Assume that A1, i.e.,

Perturbation method 1 + NAHC, is chosen for this

iteration. The selected components are executed,

resulting in the generation of a new local optimum

solution (Solnew) with a fitness value of 1.5.

Following this, the Q-table is updated. Assuming

that α=0.9 (α is specified by Equation (5) in the real

execution) and γ=0.8, the Q-value of (norm(f)∈

[0.67,1.33), A1) is computed using Equation (1),

where rt+1=1 since the execution of A1 results in a

solution with a better fitness value than the global

best solution. Table (5) displays the updated Q-

table.

Table (5): The Q-table after one iteration of ILS

 A1 A2 A3 A4 A5 A6

norm(f)∈ [0,0.67) 0 0 0 0 0 0

norm(f)∈ [0.67,1.33) 0.9 0 0 0 0 0

norm(f)∈ [1.33,∞) 0 0 0 0 0 0

Subsequently, the newly generated solution

(Solnew) is adopted as the current solution (Solcurrent),

and the next state (st+1) is specified using the current

solution's fitness value, fcurrent, and the average

fitness values of local optimum solutions obtained

from the initial iteration to the current one as

indicated by Equation (4): Avg(fcurrent) =

(0.5+2.5)/2=1.5, norm(f) = 2.5/1.5=1.667.

Therefore, st+1 is the norm (f)∈[1.33,∞).

Lastly, the next state, i.e., st+1, is considered as

the current state, i.e., st (st = norm(f)∈[1.33,∞)). The

fitness value of the global best solution is updated to

2.5. Subsequently, the next iteration of ILS

commences by selecting an appropriate action once

again. This process of iteration and action selection

continues until the stopping condition is satisfied.

5. Performance evaluation

This section assesses the performance of the

proposed algorithm. Initially, the experimental setup

is outlined, followed by a description of the

experimental results.

5.1. Experimental setup

This subsection outlines the necessary setup for

conducting the experiments.

5.1.1. Software system

Eleven small and medium-sized applications have

been chosen for evaluation and comparison

purposes. Table (6) illustrates the characteristics of

these software systems.

5.1.2. Expert’s decomposition

A modularization algorithm is considered reliable

when its outcomes closely align with expert

modularization. To evaluate the modularization

algorithms in this paper, the “mtunis” application,

for which expert decomposition is available, is

employed.

Table (6): Description of selected software systems

#Links #Files Applications

57 20 mtunis

32 13 compiler

52 16 nos

29 18 boxer

33 21 spdb

103 24 ispell

64 26 ciald

163 29 rcs

89 36 star

179 37 bison

87 38 cia

5.1.3. Assessment of results

There exist several algorithms for software

modularization. However, as there is no universally

accepted definition of optimal modularization

features, external and internal criteria are employed

to evaluate modularization quality and compare the

outcomes of different algorithms [2]. External

criteria evaluate the proximity of the obtained

modularization to expert decomposition, which is

carried out by an individual who has decomposed

the software system. A modularization algorithm is

considered reliable when its outcomes are close to

expert modularization [1]. Conversely, internal

criteria assess the accuracy with which modules are

separated based on various metrics.

This study employs TurboMQ [2] (Equation

(3)), an internal criterion, to assess the performance

of modularization methods. Additionally, the

external criteria MoJo [2], Edge MoJo [2], and Fm

[2] are used to measure the proximity of the

obtained modularization to the expert's

decomposition. Lower values of MoJo and Edge

MoJo are indicative of better performance, while

higher values of Fm and TurboMQ suggest superior

outcomes.

5.1.4. Algorithmic parameters

The parameter setting suggested in [11] is used for

experiments.

5.1.5. Research questions (RQs)

We answer the following research questions to

evaluate the proposed algorithm.

1) Does the proposed algorithm achieve

modularization close to the expert

decomposition?

2) Does the proposed algorithm produce

modularizations with a higher MQ (TurboMQ)

compared to hierarchical and non-hierarchical

algorithms?

3) Is the proposed algorithm stable?

4) Does the proposed algorithm converge to the

answer (solution)?

5) Does the execution time of the proposed

algorithm less than EAs such as Bunch and

DAGC?

6) Does the proposed informative perturbation

method is beneficial and leads to improve search

performance?

7) Does the proposed ILS algorithm have better

performance than classic (formal) ILS?

5.2. Experimental results

This section describes the experimental results. For

comparison with the proposed algorithm, we

selected several methods discussed in section 2,

including Complete Linkage (CL) [2], Single

Linkage (SL) [2], Average Linkage (AL) [2], WCA-

UE [2], fast clustering algorithm (FCA) [11], Bunch

[9], DAGC [4], NAHC [9], and SAHC [9].

Additionally, the k-means algorithm [2] and ACDC

are chosen for comparison. We address the research

questions below.

5.2.1. RQ 1

To address RQ1, the MoJo, Edge MoJo, and Fm

measures are calculated for the modularization

outcomes produced by each algorithm. These

external criteria are used to determine the proximity

of the obtained modularization to the expert

decomposition. Table (7) presents the values of

these criteria for the compared search-based

algorithms on the “mtunis” application. The most

favorable outcomes in this table are highlighted in

bold. Regarding MoJo, the proposed algorithm

performs better than DAGC and is equivalent to

other methods. In terms of Edge MoJo and Fm, it is

equivalent to Bunch and superior to other methods.

The proposed algorithm exhibits similar behavior to

Bunch, which is a well-known method for software

modularization. These findings confirm the

reliability of the proposed algorithm.

Table (7): The external criteria values

Fm Edge MoJo MoJo Algorithms

0.57 7.47 5 Bunch

0.48 10.33 7 DAGC

0.53 13.14 5 NAHC

0.55 10.81 5 SAHC

0.57 7.47 5 Proposed algorithm

5.2.2. RQ 2

To address RQ2, the TurboMQ (Equation (3)) value

is calculated for the modularization outcomes

produced by each algorithm on ten applications.

Table (8) presents a comparison of the proposed

algorithm with some hierarchical methods, FCA,

ACDC, and k-means, while Table (9) demonstrates

its comparison with some search-based algorithms.

The most favorable outcomes in these tables are

highlighted in bold. As shown in Table (8), the

proposed algorithm outperforms all compared

hierarchical and non-hierarchical methods. In Table

(9), the proposed algorithm performs better than

NAHC, SAHC, and DAGC in most cases and is

superior to Bunch in half of the cases while being

equivalent to Bunch in the remaining cases.

Therefore, the proposed algorithm exhibits good

performance in terms of TurboMQ.

5.2.3. RQ 3

To address RQ3, ten applications are selected, and

the proposed algorithm is executed 30 times for

each case. If the algorithm's results are close enough

to each other, it is stable.

To analyze the stability of the outcomes, the t-

test statistical technique is employed. For this, the

obtained results are divided into two groups of equal

size, named G1 and G2. Subsequently, descriptive

and inferential statistics are derived from G1 and

G2. Table (10) displays the outcomes, where the

first three columns present descriptive statistics, and

the last two columns depict the output of the

inferential statistics. The descriptive statistics

consist of the mean, standard deviation, and

standard error between the mean of the two groups.

Table (8): Comparison of the proposed algorithm with some hierarchical and non-hierarchical methods in terms of
TurboMQ

Proposed algorithm k-means ACDC FCA SL CL AL WCA-UE Applications

1.506 0.850 1.000 1.220 0.933 0.527 0.527 0.836 Compiler

3.101 0.790 2.820 3.020 0.964 0.983 0.964 1.343 Boxer

2.190 1.200 1.750 1.970 0.995 1.639 1.739 1.489 Ispell

2.684 1.000 1.000 2.250 0.994 0.994 0.994 0.994 Bison

2.790 1.780 1.860 2.049 0.997 0.997 0.997 0.997 Cia

2.851 0.780 1.700 1.720 0.984 1.093 0.487 0.984 Ciald

1.636 0.980 1.000 1.080 0.990 0.990 0.990 0.969 Nos

2.201 1.260 1.000 1.810 1.018 1.018 0.990 0.977 Rcs

5.741 1.150 5.000 5.000 0.933 0.933 0.933 0.933 Spdb

3.832 0.810 2.090 3.048 0.989 0.805 0.989 1.388 Star

Table (9): Comparison of the proposed algorithm with some search-based methods in terms of TurboMQ

Proposed
algorithm

DAGC Bunch SAHC NAHC Applications

1.506 1.506 1.506 1.465 1.442 Compiler

3.101 3.101 3.101 3.101 2.931 Boxer

2.190 1.997 2.177 2.043 2.013 Ispell

2.684 1.763 2.606 2.632 2.565 Bison

2.790 1.833 2.706 2.670 2.729 Cia

2.851 2.463 2.851 2.838 2.721 Ciald

1.636 1.606 1.636 1.550 1.547 Nos

2.201 1.894 2.175 2.103 2.066 Rcs

5.741 5.314 5.741 5.741 5.741 Spdb

3.832 2.831 3.809 3.798 3.536 Star

Table (10): t-test for analyzing the stability of the proposed algorithm

 Descriptive Statistics Inferential Statistics

Case Study Mean Standard
Deviation

Standard Error
between Mean

le ene’s test t-test

G1 G2 G1 G2 G1 G2 F Sig. T Sig.

Compiler 1.480 1.493 0.035 0.029 0.016 0.013 1.524 0.252 -0.632 0.545
Boxer 3.067 3.033 0.076 0.093 0.034 0.042 1.524 0.252 0.632 0.545
Ispell 2.155 2.161 0.079 0.066 0.035 0.029 0.121 0.737 -0.130 0.899
Bison 2.660 2.674 0.053 0.023 0.024 0.010 1.893 0.206 -0.516 0.620
Cia 2.778 2.766 0.027 0.054 0.012 0.024 1.366 0.276 0.438 0.673

Ciald 2.848 2.846 0.006 0.007 0.003 0.003 1.524 0.252 0.632 0.545
Nos 1.618 1.619 0.040 0.038 0.018 0.017 0.004 0.950 0.024 0.981
Rcs 2.174 2.154 0.060 0.065 0.027 0.029 0.491 0.503 0.493 0.635

Spdb 5.656 5.741 0.191 0.000 0.085 0.000 7.111 0.029 -1.000 0.347
Star 3.825 3.766 0.015 0.129 0.007 0.058 5.263 0.051 1.016 0.339

Levene's test is utilized as an inferential statistic to

evaluate the equality of variances for a variable

calculated for two groups. If the p-value (indicated

in the “Sig.” column in the table) is greater than a

certain significance level (0.05 in our experiments),

the null hypothesis of equal variances cannot be

rejected. The last columns of Table (10) refer to the

outcomes of an independent two-sample t-test with

equal sample sizes and equal variances (based on

the results of Levene's test) on two randomly

separated groups of proposed algorithm outcomes.

All the p-values are greater than 0.05, indicating that

the proposed algorithm exhibits stability.

5.2.4. RQ 4

To address RQ4, the convergence of the proposed

algorithm is assessed. To accomplish this, three

software systems are chosen as samples. Figures (1-

3) depict the convergence plots of our algorithm for

the “Cia,” “Ispell,” and “Nos” applications,

respectively. In these figures, the line denotes the

best

solution generated by the algorithm up to the current

iteration. These figures substantiate that the

proposed algorithm converges to the solution after

several iterations.

5.2.5. RQ 5

To address RQ5, we compared the execution time of

the proposed algorithm with Bunch and DAGC, two

well-known representatives of evolutionary

algorithms. Figures (4) and (5) display the results

for selected applications. It is worth noting that the

execution times of Bunch and DAGC have been

obtained from [37]. These figures illustrate that the

execution time of the proposed algorithm is

significantly lower than that of Bunch and DAGC.

5.2.6. RQ 6

To address RQ6, we experimented to assess the

effectiveness of the proposed perturbation method.

For this, we compared the proposed algorithm and

its variant with the proposed informative

perturbation method disabled in terms of TurboMQ.

Both algorithms were executed under the same

conditions. The outcomes are presented in Table

(11), where the bold values indicate the best

outcomes. This table reveals that in most cases (70

percent of cases), our algorithm, without the

proposed informative perturbation method, failed to

find the best solution. These findings demonstrate

that the proposed informative perturbation method

enhances the search performance of the proposed

algorithm.

Figure (5): Execution time of the algorithms on five other
applications (second)

Figure (4): Execution time of the algorithms on five
applications (second)

Figure (1): Convergence diagram of the proposed algorithm

for the “Cia” application

Figure (2): Convergence diagram of the proposed algorithm

for the “Ispell” application

Figure (3): Convergence diagram of the proposed algorithm

for the “Nos” application

0

500

1000

1500

2000

2500

3000

Compiler Nos Boxer Spdb Ispell

Proposed algorithm DAGC Bunch

0

5000

10000

15000

20000

Ciald Rcs Star Bison Cia

Proposed algorithm DAGC Bunch

Table (11): Comparison of the proposed algorithm and its

variant without the proposed informative perturbation
method

Proposed
algorithm

Proposed algorithm without

informative perturbation
method

Applications

1.506 1.506 Compiler

3.101 2.931 Boxer

2.190 2.190 Ispell

2.684 2.627 Bison

2.790 2.729 Cia

2.851 2.539 Ciald

1.636 1.628 Nos

2.201 2.175 Rcs

5.741 5.741 Spdb

3.832 3.481 Star

5.2.7. RQ 7

To address RQ7, we experimented with comparing

the performance of the proposed ILS algorithm with

classic ILS in terms of TurboMQ. To accomplish

this, we executed classic ILS by considering

different combinations of the local search method

and perturbation method. Since this paper presents

three perturbation methods and two local search

methods, there are a total of six selectable

combinations. The outcomes are demonstrated in

Table (12), where per1, per2, and per3 denote the

first, second, and third perturbation methods defined

in this paper, respectively. In this table, the bold

values indicate the best outcomes. The results reveal

that, unlike the proposed ILS, none of the

implemented classic ILS algorithms achieve the best

outcome in all cases. Therefore, the proposed ILS

algorithm exhibits superior performance compared

to classic ILS.

6. Conclusion

Modularization is a technique in reverse engineering

that aids in understanding software during the

software maintenance process. In this paper, we

introduced a modified iterated local search (ILS) for

software modularization. The proposed ILS employs

a Q-learning-based hyper-heuristic to automatically

select the perturbation method and local search

method in each iteration. To apply Q-learning, we

utilized a fitness-based state categorization that is

independent of the problem. We also presented an

informative perturbation method for the software

modularization problem. The outcomes of

experiments and comparisons with other methods on

eleven small and medium-scale applications

revealed that the proposed algorithm generates

better modularizations in most cases. Furthermore,

the proposed algorithm is general and can be easily

adapted to other optimization problems.

In the following, some improvements of this

paper that can be performed in future research are

listed.

1. Testing the proposed algorithm on large-scale

software systems such as Mozilla Firefox.

2. Using other metrics to evaluate the

modularization quality.

3. Employing the proposed algorithm to other

optimization problems.

4. Employing reinforcement learning-based hyper-

heuristic in other modular meta-heuristic to

automatically select their components.

Table (12): Comparison of the proposed ILS algorithm with the classic ILS algorithm

Proposed

ILS
algorithm

ILS

(per3+NAHC)

ILS

(per2+NAHC)

ILS

(per1+NAHC)

ILS

(per3+SAHC)

ILS

(per2+SAHC)

ILS

(per1+SAHC)

Applications

1.506 1.506 1.273 1.506 1.506 1.273 1.497 Compiler

3.101 3.101 1.781 3.101 3.101 1.781 3.101 Boxer

2.190 2.176 1.934 2.174 2.190 1.739 2.120 Ispell

2.684 2.664 2.504 2.590 2.675 2.345 2.601 Bison

2.790 2.787 2.634 2.779 2.768 2.586 2.636 Cia

2.851 2.851 1.532 2.851 2.851 1.532 2.731 Ciald

1.636 1.636 1.000 1.627 1.636 1.000 1.636 Nos

2.201 2.136 1.953 2.157 2.166 1.953 2.166 Rcs

5.741 5.741 3.000 5.741 5.741 2.000 5.741 Spdb

3.832 3.803 1.690 3.038 3.832 1.690 3.832 Star

References

[1] Pourasghar, B., Izadkhah, H., Isazadeh, A.,

Lotfi, S., “A graph-based clustering algorithm for

software systems modularization”, Information and

Software Technology 133: 106469 (2021).

https://doi.org/10.1016/j.infsof.2020.106469

[2] Isazadeh, A., Izadkhah, H., Elgedawy, I.,

Source Code Modularization Theory and

Techniques, Springer International Publishing,

2017.

[3] Aghdasifam, M., Izadkhah, H., Isazadeh,

 ., “A new metaheuristic-based hierarchical

clustering algorithm for software modularization”,

Complexity 2020: 1-25 (2020).

https://doi.org/10.1155/2020/1794947

[4] Parsa, S., Bushehrian, O., “A New Encoding

Scheme and a Framework to Investigate Genetic

Clustering Algorithms”, Journal of Research and

Practice in Information Technology 37(1): 127–143

(2005).

[5] Izadkhah, H., Tajgardan, M., “Information

theoretic objective function for genetic software

clustering”, Multidisciplinary Digital Publishing

Institute Proceedings 46(1): 18 (2019).

https://doi.org/10.3390/ecea-5-06681

[6] Harman, M., Yao, X., “Software module

clustering as a multi-objective search problem”,

IEEE Transactions on Software Engineering 37(2):

264–282 (2010).

https://doi.org/10.1109/TSE.2010.26

[7] Huang, J., Liu, J., “A similarity-based

modularization quality measure for software module

clustering problems”, Information Sciences 342:

96–110 (2016).

https://doi.org/10.1016/j.ins.2016.01.030

[8] Kumari, . C., Srini as, K., “Hyper-

heuristic approach for multi-objective software

module clustering”, Journal of Systems and

Software 117: 384–401 (2016).

https://doi.org/10.1016/j.jss.2016.04.007

[9] Mitchell, B. S., A heuristic search approach

to solving the software clustering problem, Ph.D.

Thesis, Drexel University, 2002.

[10] Sadat Jalali, N., Izadkhah, H., Lotfi, S.,

“Multi-objective search-based software

modularization: structural and non-structural

features”, Soft Computing 23(21): 11141–11165

(2019). https://doi.org/10.1007/s00500-018-3666-z

[11] Teymourian, N., Izadkhah, H., Isazadeh, A.,

“A fast clustering algorithm for modularization of

large-scale software systems”, IEEE Transactions

on Software Engineering 48(4): 1451-1462 (2020).

https://doi.org/10.1109/TSE.2020.3022212

[12] Kargar, M., Isazadeh, A., Izadkhah, H.,

“Semantic-based software clustering using hill

climbing”, International Symposium on Computer

Science and Software Engineering Conference

(CSSE) 55-60 (2017).

10.1109/CSICSSE.2017.8320117

[13] Karimi-Mamaghan, M., Mohammadi, M.,

Meyer, P., Karimi-Mamaghan, A. M., Talbi, E. G.,

“Machine learning at the service of meta-heuristics

for solving combinatorial optimization problems: A

state-of-the-art”, European Journal of Operational

Research 296(2): 393-422 (2022).

https://doi.org/10.1016/j.ejor.2021.04.032

[14] Chiarandini, M., Stützle, T., “An application

of iterated local search to graph coloring problem”,

Proceedings of the computational symposium on

graph coloring and its generalizations 112-125

(2002).

[15] Tajgardan, M., Izadkhah, H., Lotfi, S., “A

Reinforcement Learning-based Iterated Local

Search for Software Modularization”, 8th Iranian

Conference on Signal Processing and Intelligent

Systems 1-6 (2022).

10.1109/ICSPIS56952.2022.10043949

[16] Sghir, I., Ben Jaafar, I. B., Ghédira, K., “A

multi-agent based optimization method for

combinatorial optimization problems”, International

Journal on Artificial Intelligence Tools 27(05):

https://doi.org/10.3390/ecea-5-06681
https://doi.org/10.1016/j.ins.2016.01.030

1850021 (2018).

https://doi.org/10.1142/S0218213018500215

[17] Sghir, I., Hao, J. K., Jaafar, I. B., Ghédira,

K., “A multi-agent based optimization method

applied to the quadratic assignment problem”,

Expert Systems with Applications 42(23): 9252-

9262 (2015).

https://doi.org/10.1016/j.eswa.2015.07.070

[18] Asta, S., Machine learning for improving

heuristic optimisation Doctoral dissertation,

University of Nottingham, 2015.

[19] Meignan, D., Koukam, A., Créput, J.-C.,

“Coalition-based metaheuristic: a self-adaptive

metaheuristic using reinforcement learning and

mimetism”, Journal of Heuristics 16(6): 859–879

(2010). https://doi.org/10.1007/s10732-009-9121-7

[20] Özcan, E., Misir, M., Ochoa, G., Burke, E.

K., “A reinforcement learning: great-deluge hyper-

heuristic for examination timetabling”, Modeling,

analysis, and applications in metaheuristic

computing: advancements and trends 34-55 (2012).

https://doi.org/10.4018/978-1-4666-0270-0.ch003

[21] Choong, S. S., Wong, L. P., Lim, C. P.,

“Automatic design of hyper-heuristic based on

reinforcement learning”, Information Sciences 436:

89–107 (2018).

https://doi.org/10.1016/j.ins.2018.01.005

[22] Ahmed, B. S., Enoiu, E., Afzal, W., Zamli,

K. Z., “ n e aluation of Monte Carlo-based hyper-

heuristic for interaction testing of industrial

embedded software applications”, Soft Computing

24(18): 13929-13954 (2020).

https://doi.org/10.1007/s00500-020-04769-z

[23] Cheng, L., Tang, Q., Zhang, L., Yu, C.,

“Scheduling flexible manufacturing cell with no-idle

flow-lines and job-shop via Q-learning-based

genetic algorithm”, Computers & Industrial

Engineering 169 108293 (2022)

https://doi.org/10.1016/j.cie.2022.108293

 تمیالگور کی ئهارا»لو، مریم، دانشپور، نگین، نبی]42[

، مجله «ارهایمع بیبا ترک یا دسته یها داده یبرا یبند خوشه

، دانشگاه کاشان، 45-12ص ، 1، شماره 5جلد محاسبات نرم،

 .1155بهار و تابستان

[25] Saeed, M., Maqbool, O., Babri, H. A.,

Hassan, S. Z., Sarwar, S. M., “Software clustering

techniques and the use of combined algorithm”,

Seventh European Conference on Software

Maintenance and Reengineering 301-306 (2003).

https://doi.org/10.1109/CSMR.2003.1192438

[26] Maqbool, O., Babri, H., “Hierarchical

clustering for software architecture recovery”, IEEE

Transactions on Software Engineering 33(11): 759-

780 (2007).

https://doi.org/10.1109/TSE.2007.70732

[27] ndritsos, P., Tzerpos, V., “Information-

theoretic software clustering”, IEEE Transactions

on Software Engineering 31(2): 150-165 (2005).

https://doi.org/10.1109/TSE.2005.25

[28] Naseem, R., Maqbool, O., Muhammad, S.,

“Cooperative clustering for software

modularization”, Journal of Systems and Software

86(8): 2045–2062 (2013). (2013).

https://doi.org/10.1016/j.jss.2013.03.080

[29] Tajgardan, M., Izadkhah, H., “Critical

Review of the Bunch: A Well-Known Tool for the

Recovery and Maintenance of Software System

Structures”, Critical Review 6(3): 363–367 (2017).

DOI10.17148/IJARCCE.2017.6383

[30] Tajgardan, M., Izadkhah, H., “Software

Systems Clustering Using Estimation of Distribution

Approach”, Journal of pplied Computer Science

Methods 8(2): 99–113 (2016).

http://dx.doi.org/10.1515/jacsm-2016-0007

[31] Prajapati, A., Parashar, A., Rathee, A.,

“Multi-dimensional information-driven many-

objective software remodularization approach”,

Frontiers of Computer Science 17(3): 173209

(2023). https://doi.org/10.1007/s11704-022-1449-2

[32] Arasteh, B., Seyyedabbasi, A., Rasheed, J.,

M. Abu-Mahfouz, ., “Program Source-Code Re-

Modularization Using a Discretized and Modified

Sand Ca Swar O za n A g r h ”,

https://doi.org/10.1016/j.jss.2013.03.080

Symmetry 15(2): 401 (2023).

https://doi.org/10.3390/sym15020401

[33] Tzerpos, V., Holt, R. C., “Accd: an

algorithm for comprehension-driven clustering”,

Proceedings Seventh Working Conference on

Reverse Engineering 258-267 (2000).

https://doi.org/10.1109/WCRE.2000.891477

گیری اندازه»، بصیری، محدثه، عباس، زادگان رسول]12[

ها، گرا: روش افزار سرویس کمی کیفیت در مهندسی نرم

، 1شماره ، 1جلد ، مجله محاسبات نرم،«ها کاربردها و چالش

 .1151، بهار و تابستان ، دانشگاه کاشان15-4 ص

نژاد، سید محمدحسین، ، شبنم، هاشمیغلامشاهی]15[

 تمیبر الگور یمبتن یافزار نرم یها مؤلفه صیتشخ یبرا یروش»

، 7، مجله محاسبات نرم، جلد «نامغلوب یساز مرتب کیژنت

 .1157، پاییز و زمستان ، دانشگاه کاشان42-27، ص 4شماره

[36] Izadkhah, H., Elgedawy, I., Isazadeh, A.,

“E-CDGM: An Evolutionary Call-Dependency

Graph Modularization Approach for Software

Systems”, Cybernetics and Information

Technologies 16(3) (2016).

https://doi.org/10.1515/cait-2016-0035

[37] Mohammadi, S., Izadkhah, H., “A new

algorithm for software clustering considering the

knowledge of dependency between artifacts in the

source code”, Information and Software Technology

105: 252-256 (2019).

https://doi.org/10.1016/j.infsof.2018.09.001

