
Soft Computing Journal, vol. 12, no. 1, pp. 27–33, 2023

https://doi.org/10.22052/scj.2023.246636.1084

Contents lists available at SCJ

Soft Computing Journal

Journal homepage: https://scj.kashanu.ac.ir/

Optimizing web service composition through hybrid graph simplification
and NSGAII algorithm G

Narjes Zahiri 1, PhD student, Seyed Morteza Babamir 1,∗, Professor
1Department of Software Engineering, University of Kashan, Kashan, Iran.

A R T I C L E I N F O.

Article history:
Received July 21, 2022
Accepted December 13, 2022

Keywords:
Web service composition
Graph simplification
Service selection
Complex probabilistic structures
NSGAII algorithm

A B S T R A C T

In the rapidly evolving landscape of web services, efficient interaction and
optimal selection among services with different quality parameters are essential.
This paper addresses the complex challenge of selecting candidate services
for abstract services within probabilistic graph structures. We propose a new
hybrid method that combines node-based and path-based graph simplification
techniques, allowing for the identification of new patterns, such as parallel
and nested loops. We use NSGAII to improve scalability and accuracy in
service selection. The proposed approach simplifies the composition graph while
optimizing the selection process by considering important quality parameters
such as execution cost, response time, and availability. Through systematic
simplification and a robust fitness function, we ensure a definitive and accurate
response to user queries. The results show significant improvements in the
proposed approach compared to existing methods, making it a comprehensive
solution for effectively composing web services in dynamic environments.

2322-3707 / c© 2022 The Authors. Open access article under the CC BY license.

1 Introduction

Web services, as a computing model, have developed
very fast in recent years [1, 2]. Since each web service
is designed for one specific function, multiple web
services need to collaborate with each other in order
to provide effective responses to the complex needs
of users [3, 4]. Moreover, many web services provide
similar functionalities but differ in their quality. Hence
optimal selection and composition of these services
are the most important and complex challenges in
this area of research [5].

In a web service graph, each service, also called
an abstract service, has several candidate services
that can perform the same function but with different

G Article type: original research (short paper)
∗ Corresponding author.
Email addresses: nargess.zahiri@gmail.com (N. Zahiri),
babamir@kashanu.ac.ir (S. M. Babamir)

quality parameters. The most important problem is
selecting a candidate service for each abstract service
in the graphs with probabilistic patterns. To solve
this problem, the graph can be simplified through two
primary conversions: (1) a node or (2) a tree with dif-
ferent distinct paths [6]. Graph simplification meth-
ods are divided into three categories: 1) node-based
methods, which yield a single node after removing
sequential, parallel, conditional and loop patterns, 2)
path-based methods, which extract all paths between
the initial and terminal nodes of the graph, and 3)
Hybrid methods, which are the combination of node-
and path-based methods [6]. In the hybrid method,
sequential, parallel, and loop patterns are removed by
the node-based method, while conditional patterns
remain to preserve the probability of each graph path
and to maintain the accuracy of the algorithm (as the
multiplication of transition probabilities in the qual-
ity parameters of the nodes is not performed) [3, 6].
This article uses the hybrid method. Since graph sim-

How to cite this article: N. Zahiri, S. M. Babamir, “Optimizing web service composition through hybrid graph simplification
and NSGAII algorithm”, Soft Comput. J., vol. 12, no. 1, pp. 27–33, 2023, doi: 10.22052/scj.2023.246636.1084.

https://doi.org/10.22052/scj.2023.246636.1084
https://scj.kashanu.ac.ir/
https://scj.kashanu.ac.ir/
https://doi.org/10.22052/scj.2023.246636.1084


28 N. Zahiri, S. M. Babamir / Optimizing web service composition through hybrid graph simplification and ...

plification depends on the quality of the candidate
services, in addition to the structural patterns of the
graph, in the following, we examine the quality pa-
rameters of web services and the challenges associated
with their optimal selection.

The quality of web services includes non-functional
features such as execution cost, execution time, and
service availability. These quality features are clas-
sified into two categories: negative features, which
should be minimized (e.g., response time and cost),
and positive features, which should be maximized
(e.g., availability) [7, 8].

The approaches presented in references [9–11] pro-
vide solutions for the optimal selection of candidate
web services; however, they exhibit two notable lim-
itations: (1) only the sequence pattern in the web
services composition graph is considered, as a result,
they do not support probabilistic structures, and (2)
they use the node-based method. Similarly, in the ap-
proach presented in [12], in addition to the sequence
pattern, the parallel pattern is considered, but this
approach has the second limitation. The approaches
presented in [13–15] consider all kinds of patterns in
web service composition graphs and also support the
probabilistic conditional pattern and repeated loops.
However, they do not support probabilistic parallel
and loop patterns and also face the second limitation.
Our primary focus is on supporting various types of
web service composition graph structural patterns
and their simplification methods. On the other hand,
the most complete approach is presented in reference
[6], which we consider as the basic work. In this ap-
proach, complex patterns including loops with more
than two nodes and various conditional patterns are
covered, and the probability of each path is also cal-
culated. Nevertheless, it has several shortcomings: (1)
does not consider nested and parallel loop patterns;
(2) it models the problem as a constraint satisfaction
problem rather than an optimization problem; (3) it
employs a non-evolutionary algorithm for the selec-
tion of optimal candidate services, resulting in limited
scalability in terms of time; and (4) After simplifying
and finding the probability of each path, it analyzes
each path separately, which is an obstacle to give a
definitive answer to the customer. In this article, we
address these 4 cases. Therefore, the innovations of
this article are as follows:

• Supporting all types of patterns and probabilis-
tic transitions between services, as well as the
introduction of two new patterns of parallel and
nested loops.
• Using an evolutionary algorithm for optimal

candidate selection to maintain scalability.
• Providing a hybrid method based on repeating
the path to improve the accuracy of responses
to customers.

2 Related work

This section is organized into several subsections that
focus on methods for simplifying patterns in the web
services composition graph.

2.1 Node-based methods

Yao et al. (2009) used the NSGAII to find optimal
solutions in graphs with complex patterns and com-
pared its performance with the genetic algorithm
(GA) in terms of the convergence speed and the gener-
ation of optimal solutions [13]. Li et al. (2010) utilized
the NSGAII to determine optimal solutions in the web
service composition by considering 10 objective func-
tions. They evaluated their algorithm by reporting
the number of dominant and non-dominant solutions
[10]. Sharif-Ara et al. (2014) proposed a method that
can find the optimal solution at a high speed. This
approach initially simplifies the problem to a single-
objective format, subsequently employing a combi-
nation of GA and fuzzy methods to enhance speed,
accuracy, and reliability, before transforming it into
a multi-objective problem addressed by the NSGAII
[14]. Liu et al. (2015) compared NSGAII, MOPSO, a
hybrid of NSGAII and hierarchical analysis, and a hy-
brid of MOPSO and hierarchical analysis. According
to this comparison, they used hierarchical analysis
in their solutions [15]. Gohain et al. (2016) applied
a hybrid algorithm of ACO and PSO by converting
the five objective functions—reliability, availability,
throughput, cost, and response time—into a single
objective [9]. Ying Huo et al. (2017) proposed the eli-
tist multi-objective bee colony algorithm, integrating
the bee colony and NSGAII, which demonstrated su-
perior performance compared to NSGAII, PSO, and
the bee colony algorithm in terms of spread, GD, and
execution time [11]. Sadouki et al. (2019) used the
discrete multi-objective elephant algorithm. They are
inspired by the Pareto approach and SPEAII sorting
method. Their results indicated that this algorithm
significantly outperformed the PSO and SPEAII algo-
rithms in terms of coverage ratio, spread, and hyper-
volume [16]. Dahan et al. (2021) Introduced a hybrid
algorithm that combines ACO and GA, where GA is
used to automatically tune the parameters of ACO
and ACO adapts its performance based on the pa-
rameters tuning. The main contribution of their work
is to help the ACO algorithm to avoid the stagnation
problem. The results show that their algorithm re-
quires more CPU time than other methods; however,
it is better in terms of cost, response time, reliability,
and availability [17]. Additionally, Dahan et al. (2021)
proposed a new method named Enhanced Flying Ant
Colony Optimization (EFACO), which incorporates
three main innovations. First, it avoids the execution
time problem by restricting the flying process to only
occur when there are improvements in solution qual-



Soft Computing Journal, vol. 12, no. 1, pp. 27–33 29

ity. Second, a neighboring selection method is applied
to avoid scanning all the neighboring nodes, which
may decrease the quality of the solutions. Lastly,
they introduced a third modification that transforms
the algorithm into a multi-pheromone algorithm, ef-
fectively addressing the drawbacks of the first two
modifications. The results demonstrate that EFACO
outperforms the other methods in terms of solution
quality and execution time [18].

2.2 Path-based methods

Ardagna et al. (2005) proposed a mixed integer linear
programming algorithm evaluated by considering four
objective functions and converting them to a single
objective function. This problem has been solved by
converting the web service composition graph into
different execution paths. In this method, there are
selected paths that provide the most optimal solution
[12].

2.3 Hybrid methods

Zheng et al. (2012) proposed a new pattern to develop
their previous work in 2009. This pattern is called a
multiple-entry multiple-exit unstructured loop pat-
tern. To simplify the web-service composition graph,
they used a hybrid method, which calculates the
probability of each path. An integer programming
algorithm has been used for the optimal selection of
candidates [6].

3 Proposed method

The proposed method is briefly divided into two main
components. In the first component, the problem of
web service composition is addressed. In addition to
identifying two new patterns, we propose a method
for simplifying the composition graph, resulting in
a more accurate and definitive answer to customers.
After simplifying the graph by replacing a different
candidate, the proposed method generates a popula-
tion (composition algorithm). In the second compo-
nent, the NSGAII algorithm is used to find optimal
solutions for this problem (selection algorithm).

3.1 Identification of two new patterns

In this section, two new patterns are identified.

Parallel loop pattern: Two nodes v2 and v3 are
called parallel loops if they: (a) are parallel to each
other (according to the definition of parallel pattern
[6]), and (b) both nodes have an input edge to the
shared input node. Condition (b) indicates that there
are two input edges, ej2 and ej3, defined as ej2 =
(v2, v1, p21) and ej3 = (v3, v1, p31) (see Fig. 1).

Nested loop pattern: The sequence of nodes
v1, v2, · · · , vm, vm+1, · · · , vn form a nested loop if:

Fig. 1. Parallel loop

(a) two sets {v1, v2, · · · , vm} and {vm, vm+1, · · · , vn}
form a loop [6], and (b) these two loops have at least
one shared node. Condition (b) states that a node
from the first loop (vm) is the input node for the
second loop (see Fig. 2).

Fig. 2. Nested loop

3.2 Composition algorithm

In this section, we explain the details of the composi-
tion algorithm to simplify the composition graph.

First step: For each web service in the composition
graph, a random candidate is selected from the QWS
dataset.

Second step: The patterns in the graph are examined
in such a way that the sequence pattern is checked
first, then the loop, and finally the parallel patterns
are checked. This process is repeated until none of
these three patterns remain present in the graph.
During the simplifying of each pattern, the candidate
quality values and the available possibilities are also
updated (as detailed in [6]).

Third step: If the result of simplifying the patterns is
a node, it is considered a member of the population;
otherwise the tree is created from the graph, and
each path, after simplifying the sequence pattern (the
existing pattern in each path), is considered as a
member of the population separately.

Fourth step: The first to third steps are repeated ac-
cording to the number of initial population members
[3].

3.3 Optimal selection of web services

After simplifying the graph, the selection algorithm is
invoked to find the optimal selection of web services.
To implement this algorithm, it is necessary to define:
1) the initial population (set of solutions), and 2)



30 N. Zahiri, S. M. Babamir / Optimizing web service composition through hybrid graph simplification and ...

the fitness function used to select the best candidate
for each web service. Therefore, we first describe the
initial population and the fitness function defined
for the problem, followed by the introduction of the
selection algorithm.

Initial population: Each member of the initial pop-
ulation, which is the result of simplifying the compo-
sition graph by replacing the normalized candidate,
is defined as a pair of Spop = (Index,Quality). Here,
Spop.Index is a vector with dimension z, where z
is the number of abstract services. Each dimension
of this vector represents the index number of the
available candidate for that abstract service. Initially,
for each dimension, a candidate service is randomly
selected from the service store. After selecting the
candidate, the composition algorithm is invoked to
simplify the graph, meanwhile, the quality values of
the graph are also updated and Spop.Quality is set.
This variable is defined as Spop.Quality = (A,R,C),
where A, R, and C are the values of availability, re-
sponse time, and cost resulting from graph simplifi-
cation, respectively.

Fitness function: After determining the popula-
tion members, the selection algorithm needs a fit-
ness function to identify the best members. The fit-
ness function for the NSGAII algorithm is defined
based on Spop.Quality. For any two members, i and
j, in the Spop set, member i overcomes member j if
Spopj.Quality < Spopi.Quality. The crowding dis-
tance for member i is defined in Eqs. (1) and (2). The
value of parameter k in this problem ranges from 1
to 3.

di,k =
Spopi+1.Qualityk − Spopi−1.Qualityk
SpopNpop.Qualityk − Spop1.Qualityk

(1)

CDi =

3∑
k=1

di,k (2)

In the selection algorithm, after finding the fitness of
each member, the population members (solutions),
which include binary pairs (Index,Quality), are
sorted and additional members are removed.

3.4 Selection algorithm

In the initial step, we invoke the composition algo-
rithm to find the initial members of the population.
The second step checks the structure of the graph
post-simplification; if it is a node, the NSGAII algo-
rithm is applied. If this structure is a tree, the algo-
rithm is invoked separately for each path, as many
times as it is repeated. This algorithm uses mutation
and crossover to create a new population, and the
defined fitness function to find the best members. In
the third step, we calculate the average quality pa-
rameters for each remaining node or a set of paths
obtained from the graph.

4 Results

To evaluate the proposed method, the web-service
composition graph (Fig. 3) is considered, which
consists of 22 web services. Additionally, the QWS
dataset 1 is used as a candidate for each abstract web
service. We consider three parameters, availability,
response time, and cost, as well as two quality indi-
cators, Spread and IGD, to compare the proposed
method with other methods. To this end, we provide
brief definitions of these indicators, describe the
graph simplification steps, and analyse the results of
comparing the proposed method with other methods.
The proposed method is implemented using MAT-
LAB 2016 on a system with a Core i7 processor, 32
GB of RAM, and Windows 10 operating system.

Fig. 3. Web service composition

The spread metric shows the average distance be-
tween the solutions obtained in the Pareto front [3]. A
smaller average distance among the solutions signifies
a better distribution of data. The IGD metric indi-
cates the average distance between the solutions on
the optimal Pareto front and those obtained from the
algorithm [3]. A smaller distance demonstrates that
the solutions obtained from the proposed algorithm
are closer to the optimal solutions.

The steps for simplifying the web services compo-
sition graph are illustrated in Fig. 4 to Fig. 8. In gen-
eral, two methods are used to simplify graphs with
conditional patterns: the probabilistic method and
the proposed method. In the probabilistic method,
after extracting the paths, each path is initially sim-
plified according to the sequence pattern. Next, the
probabilities of each path are multiplied by the quali-
tative values of the remaining nodes in that path to
simplify the graph to a single node. Then the selec-
tion algorithm is executed for the entire graph. In the
proposed method, instead of multiplying the proba-
bilities by the qualitative values for each extracted
path, the algorithm is executed for each path as many
times as it is repeated. Therefore, in the method pre-
sented in this paper, the probabilities of each path
are converted into the number of executions for each

1 https://qwsdata.github.io/

https://qwsdata.github.io/


Soft Computing Journal, vol. 12, no. 1, pp. 27–33 31

path, and the selection algorithm is implemented sep-
arately for each path. In this approach, the number
of executions of each path plays a crucial role in de-
termining the optimal solution without the need to
multiply probabilities by qualitative values. Moreover,
this method facilitates the selection of the best path
from a set of paths. Fig. 4 and Fig. 5 report the aver-
age parameters for the first path after 30 repetitions,
the second path after 4 repetitions, and so forth. The
results show that the first path is the best path to
choose.

Fig. 4. Removing the sequence patterns

Fig. 5. Removing the loop patterns

Fig. 6. Removing the parallel patterns

The proposed method is compared with the hybrid-
based approach presented in [6], and the results are

Fig. 7. Removing the sequence patterns

Fig. 8. Path extraction with the proposed algorithm

detailed in Table 1. Moreover, Table 2 compares the
results of the proposed method with the findings of
reference [15]. In Table 1, the selection algorithm is
the same, and the composition algorithm is different,
while in Table 2, both the composition and selection
algorithms are different. The results demonstrate that
the proposed method outperforms all the compared
methods in terms of reliability while having worse
performance in response time. Furthermore, its per-
formance is better in the spread compared to the first
and second methods, as well as in IGD compared to
the second method.

Table 1. The comparison of the proposed method and
the hybrid-based method, where the selection algorithm
is NSGAII.

Composition Method Availability Response Time Cost

Hybrid-based with probability 0.52 0.38 0.017

Hybrid-based with repetition 0.69 0.22 0.010

5 Conclusion

With the rapid growth of user complex requests, the
need to compose web services in order to reuse and
create powerful flexible services is intensified. There-
fore, there is an increasing requirement not only for
understanding various complex patterns in web ser-
vice composition but also for methods that can sim-
plify these compositions and identify the best candi-



32 N. Zahiri, S. M. Babamir / Optimizing web service composition through hybrid graph simplification and ...

Table 2. The comparison results, where the composi-
tion algorithm is node-based.

Selection Method
Objectives Indicators

Reliability Response Time IGD Spread

NSGAII - - 0.015 0.563

MOPSO - - 0.027 0.610

GA with AHP 14.1 1408 - -

PSO with AHP 14.4 1648 - -

NSGAII with AHP 28.7 1224 - -

NSGAII-AHP 24.6 1131 - -

MOPSO with AHP 19.7 1190 - -

MOPSO-AHP 19.3 1036 - -

Proposed method 58 1103 0.464 0.016

date. In this paper, we introduce two new patterns
in the web service composition (i.e., nested and par-
allel loops) and then propose a method aimed at
simplifying the composition to improve the overall
quality and accuracy of the final outcomes. We used
the NSGAII evolutionary algorithm for the optimal
candidate selection.

Conflict of interest

The authors declare that they have no conflict of
interest.

References

[1] A. Rasoolzadegan and m. Basiri, “The quantita-
tive measurement of quality in service-oriented
software engineering: Methods, applications, and
issues,” Soft Comput. J., vol. 3, no. 1, pp. 2–19,
2014, dor: 20.1001.1.23223707.1393.3.1.54.5 [In
Persian].

[2] M. Dehghani and S. Emadi, “Developing
a new model for governance maturity of
service oriented architecture,” Soft Comput.
J., vol. 4, no. 2, pp. 54–67, 2016, dor:
20.1001.1.23223707.1394.4.2.57.7 [In Persian].

[3] N. Zahiri and S. M. Babamir, “A method to
simplify patterns in web services compositions
and select optimal probabilistic composition,”
Soft Comput. J., vol. 9, no. 2, pp. 44–71, 2021,
doi: 10.22052/scj.2021.243188.1003 [In Persian].

[4] F. Chen, R. Dou, M. Li, and H. Wu, “A flexible
qos-aware web service composition method by
multi-objective optimization in cloud manufac-
turing,” Comput. Ind. Eng., vol. 99, pp. 423–431,
2016, doi: 10.1016/J.CIE.2015.12.018.

[5] A. Strunk, “Qos-aware service composition: A
survey,” in 8th IEEE European Conference
on Web Services (ECOWS 2010), 1-3 De-
cember 2010, Ayia Napa, Cyprus, A. Brogi,
C. Pautasso, and G. A. Papadopoulos, Eds.
IEEE Computer Society, 2010, pp. 67–74, doi:
10.1109/ECOWS.2010.16.

[6] H. Zheng, W. Zhao, J. Yang, and A. Bouguet-

taya, “Qos analysis for web service compositions
with complex structures,” IEEE Trans. Serv.
Comput., vol. 6, no. 3, pp. 373–386, 2013, doi:
10.1109/TSC.2012.7.

[7] Z. Brahmi, “Qos-aware automatic web service
composition based on cooperative agents,” in
2013 Workshops on Enabling Technologies: In-
frastructure for Collaborative Enterprises, Ham-
mamet, Tunisia, June 17-20, 2013, S. Reddy and
M. Jmaiel, Eds. IEEE Computer Society, 2013,
pp. 27–32, doi: 10.1109/WETICE.2013.1.

[8] G. Canfora, M. Di Penta, R. Esposito, and M. L.
Villani, “A lightweight approach for qos aware
service composition,” in Proceedings of 2nd in-
ternational conference on service oriented com-
puting (ICSOC’04), 2004, pp. 1–10.

[9] S. Gohain and A. Paul, “Web service composition
using pso — aco,” in 2016 International Confer-
ence on Recent Trends in Information Technol-
ogy (ICRTIT), 2016, pp. 1–5, doi: 10.1109/ICR-
TIT.2016.7569553.

[10] L. Li, P. Yang, L. Ou, Z. Zhang, and P. Cheng,
“Genetic algorithm-based multi-objective optimi-
sation for qos-aware web services composition,”
in Knowledge Science, Engineering and Man-
agement, 4th International Conference, KSEM
2010, Belfast, Northern Ireland, UK, Septem-
ber 1-3, 2010. Proceedings, ser. Lecture Notes
in Computer Science, Y. Bi and M. Williams,
Eds., vol. 6291. Springer, 2010, pp. 549–554,
doi: 10.1007/978-3-642-15280-1_50.

[11] Y. Huo, P. Qiu, J. Zhai, D. Fan, and
H. Peng, “Multi-objective service composition
model based on cost-effective optimization,”
Appl. Intell., vol. 48, no. 3, pp. 651–669, 2018,
doi: 10.1007/S10489-017-0996-Y.

[12] D. Ardagna and B. Pernici, “Global and lo-
cal qos guarantee in web service selection,” in
Business Process Management Workshops, BPM
2005 International Workshops, BPI, BPD, ENEI,
BPRM, WSCOBPM, BPS, Nancy, France,
September 5, 2005, Revised Selected Papers,
C. Bussler and A. Haller, Eds., vol. 3812, 2005,
pp. 32–46, doi: 10.1007/11678564_4.

[13] Y. Yao and H. Chen, “Qos-aware service com-
position using nsga-ii1,” in Proceedings of the
2nd International Conference on Interaction Sci-
ences: Information Technology, Culture and Hu-
man (ICIS 2009), Seoul, Korea, 24-26 Novem-
ber 2009, ser. ACM International Conference
Proceeding Series, S. Sohn, L. Chen, S. Hwang,
K. Cho, S. Kawata, K. Um, F. I. S. Ko, K. Kwack,
J. H. Lee, G. Kou, K. Nakamura, A. C. M. Fong,
and P. C. M. Ma, Eds., vol. 403. ACM, 2009,
pp. 358–363, doi: 10.1145/1655925.1655991.

[14] P. Sharifara, A. Yari, and M. M. R. Kashani,
“An evolutionary algorithmic based web service



Soft Computing Journal, vol. 12, no. 1, pp. 27–33 33

composition with quality of service,” in 7’th In-
ternational Symposium on Telecommunications
(IST’2014), 2014, pp. 61–65, doi: 10.1109/IS-
TEL.2014.7000670.

[15] L. Liu and M. Zhang, “Multi-objective optimiza-
tion model with AHP decision-making for cloud
service composition,” KSII Trans. Internet Inf.
Syst., vol. 9, no. 9, pp. 3293–3311, 2015, doi:
10.3837/TIIS.2015.09.002.

[16] S. C. Sadouki and A. Tari, “Multi-objective and
discrete elephants herding optimization algo-
rithm for qos aware web service composition,”
RAIRO Oper. Res., vol. 53, no. 2, pp. 445–459,
2019, doi: 10.1051/RO/2017049.

[17] F. Dahan, W. Binsaeedan, M. Altaf, M. S. Al-
Asaly, and M. M. Hassan, “An efficient hy-
brid metaheuristic algorithm for qos-aware cloud
service composition problem,” IEEE Access,
vol. 9, pp. 95 208–95 217, 2021, doi: 10.1109/AC-
CESS.2021.3092288.

[18] F. Dahan, K. M. E. Hindi, A. Ghoneim,
and H. Alsalman, “An enhanced ant colony
optimization based algorithm to solve qos-
aware web service composition,” IEEE Access,
vol. 9, pp. 34 098–34 111, 2021, doi: 10.1109/AC-
CESS.2021.3061738.


	1 Introduction
	2 Related work
	2.1 Node-based methods
	2.2 Path-based methods
	2.3 Hybrid methods

	3 Proposed method
	3.1 Identification of two new patterns
	3.2 Composition algorithm
	3.3 Optimal selection of web services
	3.4 Selection algorithm

	4 Results
	5 Conclusion

